

about me

Hi, I’m Tobias.

20 years in music tech

CTO at ARTURIA

Unreal Engine, VR, coding agents

 April 2025: New model available

 • 1,000,000 token context

 • Free unlimited access

 • One week to experiment in Roo Code

So I tried to build yet another synthesiser...

Let’s build something

The synth itself? It made sound

It Figured It Out

What WAS impressive:

Build system setup (CMake, Conan,
dependencies) + Git handling

Agentic loop in action:

Error → Fix → Iterate → Works

After Quasar, I was facing:

API-based tools → Pay per token = hesitate before using

GitHub Copilot → flat fee but no agentic mode, felt slow

What made a difference to me:

Anthropic released Sonnet 4 → better reasoning

Fixed pricing option → no more token counting

Claude Code with Planning Mode → multi-step execution

Getting Hooked

Agentic Coding

Opus 4.1 (extended thinking mode)
Key capability: Autonomous execution

Plans → Implements → Executes →
Refines → Iterates

Tools:

Codex, Cursor, Claude Code, GitHub, Copilot, Cline, Open Code ...

Coding Agent = LLM + Control Program + Tools

LLM: The reasoning engine (GPT, Gemini, etc.)

Control Program: Plans, breaks down tasks, iterates

Tools: Executes commands, runs tests, reads output

You're no longer prompting and copy-pasting.

Confidence and Confusion

Common failure modes: Hallucination, Context Collapse, Task Drift, Mocking Functionality

"You are absolutely right." → taken the wrong direction

"Let me try a simpler approach..." → throwing in the towel

It’s confident... It’s just wrong.
Opus 4.1 (extended thinking mode)

All models are wrong. Some are useful.

How can we make these tools more useful?

LLMs are pure functions

Output quality = Input quality

Context can fail:

Missing information

Wrong information

Too much information

Wrong direction

Context engineering = avoiding these failures.

The model has general knowledge, everything specific
to YOUR project comes from context.

Tokens In

LLM

Tokens Out

The chat approach

Treating it like any chat tool:

Open a conversation. Keep adding to it.

The problem: Context fills up → Agent forgets → Quality drops

Eventually: context collapse

Works for quick tasks. Breaks on real projects.

What helps:

• Watch context usage %

• Write a handover: key decisions, current state, next steps

• Reset early and often

System Instructions

CLAUDE.md

Claude Built-in Tools

MCP Tools

Build Feature X

Read()

Modify()

Write()

Agent Message

Fix Bug X

Find file()

Read()

Search()

Frequent Intentional Compaction

subagent

subagent

subagent

research.md

subagent

subagent

subagent

subagent

subagent

plan.md

System Instructions

CLAUDE.md

Claude Built-in Tools

MCP Tools

User message

/research_codebase

Task()

Task()

Task()

Write()

/clear

System Instructions

CLAUDE.md

Claude Built-in Tools

MCP Tools

/create_plan research.md

Read()

research.md

Task()

Task()

Task()

Write()

/clear

System Instructions

CLAUDE.md

Claude Built-in Tools

MCP Tools

/implement_plan plan.md

Read()

plan.md

Read()

Edit()

Write()

MultiEdit()

...

/clear

System Instructions

CLAUDE.md

Claude Built-in Tools

MCP Tools

/validate_plan plan.md

Read()

plan.md

Run_test()

Run_code_review()

Write()

...

...

/clear

Research Planning Implementation VALIDATION

HUMAN
REVIEW

HUMAN
REVIEW

@DexHorthy
Advanced

Context
Engineering for
Coding Agents

My “Intentional Compaction” Setup
 Slash Commands (Quick, single-shot actions)

Perfect for repetitive tasks

Can orchestrate sub-agents

Examples: /commit, /refactor, /review, /optimize

 Sub-agents (Multi-step workflows)

Execute autonomous workflows

Own separate context window

Examples: debugger, test-engineer

 Skills (Loaded automatically when relevant)

Provides reference docs

Like custom instructions

Examples: coding standards, project context, tech docs

.claude/
├── commands/
│ ├── create_plan.md
│ ├── implement_plan.md
│ ├── optimize_dsp.md
│ ├── run_tests.md
│ ├── lint_cpp.md
│ ├── fix_format.md
│ ├── create_handoff.md
│ ├── resume_handoff.md
│ └── ...
│
├── agents/
│ ├── dsp_optimizer.md
│ ├── code_reviewer.md
│ ├── codebase_analyzer.md
│ ├── code_reviewer.md
│ └── ...
│
└── skills/
 ├── audio-coding-standards.md
 ├── real_time-constraints.md
 ├── plugin_architecture.md
 └── ...

Remote debugging with GDB & TMUX

BMAD Framework

Multi-agent system with specialized roles:

Multiple collaborating agents

Each with specific context/role

Automated handoffs between phases

Scales from small fixes to complex
systems

https://github.com/bmad-code-org/BMAD-METHOD

Where are we at the hype cycle ?

https://en.wikipedia.org/wiki/Gartner_hype_cycle

It's Still Early

Beyond the practical challenges ...

There's also a concern:

Many of us love the craft - the problem-solving, the flow.

If that changes, what are we losing?

Are we just going to write specs and orchestrate agents?

My perspective:

I love coding..

Less time on things I don't want to do

More time exploring new things

Able to do what I couldn't before

Thank you, ADC !!!

Tobias Baumbach

tobias.baumbach@arturia.com | https://www.linkedin.com/in/tobias-b-472ab75a/

https://www.linkedin.com/in/tobias-b-472ab75a/

