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Applications — Tasks

Tasks can be framed as mappings across modalities:

Audio 2 Audio (effects, enhancement)
Text > Audio (generation, synthesis)

Multiple Audio channels 2 Single Audio (mixing, audio-conditioned transformations, style
transfer)

Audio > Multiple Audio (source separation)
Audio 2 Text (transcription, description)

Audio » Symbols / Numbers (discrete classes, timestamps for segmentation such as beat
detection)

Audio - Intermediary > Audio (audio codecs)



Modalities and Representation

Fig. 8 | Spectra features from audio examples.
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Figure 4: Audio content representations. On the
top, a digital audio signal is illustrated with its sam-
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Figures from: Choi, Keunwoo & Fazekas, Gyorgy & Cho, Kyunghyun & Sandler, Mark. (2017). A Tutorial on Deep Learning for Music Information Retrieval. https://arxiv.org/abs/1709.04396 and McCarthy, R.A., Zhang, Y., Verburg, S.A. et al. Machine Learning in
Acoustics: A Review and Open-source Repository. npj Acoust. 1, 18 (2025). https://doi.org/10.1038/s44384-025-00021-w



The Premise

Photo by Victor Barrios on Unsplash




Deepest level

y= f(z x;w; + b)

1.Weigh 2.Sumup  3.Activate

Figure from: https://telefonicatech.uk/wp-content/uploads/adatis/PERCEPTRON-OR-Implementation.gif
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Figure from: Afan, Haitham & Ibrahem Ahmed Osman, Ahmedbahaaaldin & Essam, Yusuf & Ali Najah Ahmed, Al-Mahfoodh & Huang, Yuk & Kisi, Ozgur & Sherif, Mohsen & Sefelnasr, Ahmed & Chau, Kwok & El-Shafie, Ahmed. (2021). Modeling the fluctuations@
groundwater level by employing ensemble deep learning techniques. Engineering Applications of Computational Fluid Mechanics. 15. 1420-1439. 10.1080/19942060.2021.1974093.
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Figure from: Shenfield, Alex & Howarth, Martin. (2020). A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults. Sensors. 20. 10.3390/s20185112.
https://www.researchgate.net/publication/344229502_A_Novel Deep_Learning_Model_for_the_Detection_and_ldentification_of_Rolling_Element-Bearing_Faults/citation/download



Autoencoder

Ideally they are identical.
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Figure from: Weng, Lilian: “From Autoencoder to Beta-VAE”, https://lilianweng.github.io/posts/2018-08-12-vae/

%




Variational
Autoencoder

Mean

7

Ideally they are identical.  ---------------------- -

X ~x

Probabilistic Encoder

q5(2[x)

Sampled
latent vector

Probabilistic

Std. dev

Figure from: Weng, Lilian: “From Autoencoder to Beta-VAE”, https://lilianweng.github.io/posts/2018-08-12-vae/
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Figure from: Ronneberger, Olaf: “U-Net: Convolutional Networks for Biomedical Image Segmentation”, https://arxiv.org/pdf/1505.04597



2-D CNN

Figure from: https://zilliz.com/glossary/convolutional-neural-network
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(@) Recurrent Neural Network (b) Feed-Forward Neural Network

Figure courtesy of: “Introduction to Recurrent Neural Networks”, https://www.geeksforgeeks.org/machine-learning/introduction-to-recurrent-neural-network/
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i. f and o are the input, forget
and output gates, respectively. ¢ and ¢ denote the memory cell and the new memory cell content. (b)

r and z are the reset and update gates, and / and h are the activation and the candidate activation.

Figure from: Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. https://arxiv.org/pdf/1412.3555
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Figure from: Vaswani, Ashish et al.: “Attention Is All You Need”, https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4aB45aa-Paper.pdf
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Figure from: Vaswani, Ashish et al.: “Attention Is All You Need”, https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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Figure 2: Autoencoder architecture. Red components are part of the neural network architecture,
green components are the latent representation, and yellow components are deterministic synthesiz-
ers and effects. Components with dashed borders are not used in all of our experiments. Namely,
z is not used in the model trained on solo violin, and reverb is not used in the models trained on
NSynth. See the appendix for more detailed diagrams of the neural network components.

Figure from: Engel, Jesse et al.: “DDSP: Differentiable Digital Signal Processing”, https://arxiv.org/pdf/2001.04643



i ™ i
Inputs DSP parameters
*— f
'“'ll'l' U 0 ® {
+ E
Audio signal Acoustic features  Control signal 1
. ’ PiT
l Time varying
[ s 3
Parameterisation
i 3
Neural Network  Known Estimator Direct Optimisation Global
\ S . v,
m K_J -‘
Post-processing Differentiable Digital Signal Processing
%ﬁ Noise source Oscillator SWF
Neural Network g
+ ] )
| Filterbank Mixer
DSP Example graph l
L A L. ’,
Vo |
f '
Optimisation
i, [ ]
O ®m w11
Parameter loss Self-supervision Audio loss Adversarial Training
L o

FIGURE 1

Figure from: Hayes, Ben et al.: “A review of differentiable digital signal processing for music and speech synthesis”, https://comma.eecs.qmul.ac.uk/assets/pdf/Hayes_DDSP_Review.pdf
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FIGURE 3

A high level view of audio gynthesis tasks to which DDSP has been applied. Further disocussion on each is presented in Section 2

Figure from: Hayes, Ben et al.: “A review of differentiable digital signal processing for music and speech synthesis”, https://comma.eecs.gmul.ac.uk/assets/pdf/Hayes_DDSP_Review.pdf
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Figure from: Abascal, Miguel Angel Hoyo: “Generative Adversarial Networks: A rivalry that strengthens”, https://quantdare.com/generative-adversarial-networks-a-rivalry-that-strengthens/




Diffusion

.

'

.

'

.

'

Figure 1: A visualization of the WaveGrad inference process. Starting from Gaussian noise (n = 0),
gradient-based sampling is applied using as few as 6 iterations to achieve high fidelity audio (n = 6).
Left: signal after each step of a gradient-based sampler. Right: zoomed view of a 50 ms segment.

Figure from: Chen, Nanxin et al.: “WAVEGRAD: ESTIMATING GRADIENTS FOR WAVEFORM GENERATION”, ICLR 2021, https://openreview.net/pdf?id=NsMLjcFaO80
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Fig. 1: A continuous-time diffusion model [8] transforms (left) a Gaussian distribution to (right) an intractable data
distribution through a stochastic process {Xr }r¢[o.7] With marginal distributions {p-(Xr)}+c[0.7). During training,
the forward diffusion is simulated by adding Gaussian noise and rescaling the data, and a score model sy with
parameters @ learns the score function Vy_ log p,(x;). During the generative reverse process, the process time
7 is discretized to steps {7,...,7n} and followed in reverse from 7 = T to 7y = (. (Bottom) The next state
Xr, , is obtained based on the previous state x,, using an estimate given by the score model. The score model is

conditioned by the noise scale at the current time step, o(75 ), and optional conditioning ¢ to guide the generation
such as, e.g., a text description.

Figure from: Lemercier, Jean-Marie et al.: “Diffusion Models for Audio Restoration”, https://arxiv.org/pdf/2402.09821



Summin

Architecture / Method

1-D CNN (waveform)

2-D CNN (time/freq)

Autoencoder

Variational Autoencoder

U-Net

RNN /LSTM / GRU

Transformer

DDSP

GAN

Diffusion

Fidelity

Low-medium

Medium-high

Low-medium (lossy)

Medium

High (local detail)

Medium

High

High (naturalness)

High (if stable)

Very high

u

Latency

Low
Low-medium
Low
Low-medium
Medium

Medium

High (non-stream)
Low-medium

Low at inference

Very high (slow)

Accuracy / Quality

Decent local detail

Strong on local structure

Compression / feature rep

Smooth latent control

Strong detail retention

Decent if tuned

State of art

Strong with priors

Variable

State of art generative

Compute Load

Moderate

Moderate-high

Low-moderate

Moderate

Moderate-high

Moderate-high

Very high

Moderate

High (train) / Low (infer)

Extremely high

Long-term context

Very limited

Limited (short RF)

Very limited

Limited

Limited (often short context)

Good (bounded memory)

Excellent (if big context)

Limited (often short context)

Depends underlying arch

Weak (no long seq mem)

Training Data Needs

Moderate

Large

Small-moderate

Moderate-large

Large

Moderate-large

Very large

Moderate-large

Very large

Enormous

Streaming / Realtime

Yes

Yes

Yes

Partial

Yes (with tweaks)

Yes, with limits

Tricky but possible

Yes

Yes

No

Note: This table is mostly for fun! Unfortunately, this is far too complex to summarize like this.
In reality, it requires lots of dedicated and interesting experimentation for each task/application...

Run the experiments!

Suitable For

Denoising, onset detection, beat tracking

ASR, tagging, classification, enhancement

Compression, embedding, codec-like tasks

Generative sound morphing, latent exploration

Source separation, denoising, enhancement

ASR, transcription, sequence labeling

ASR, transcription, TTS, classification, tagging, music modeling

Instrument synthesis, timbre transfer, effect modeling

Audio generation, style transfer, enhancement

High-fidelity generation (music, speech), offline enhancement



Audio Examples

System

Dragon NaturallySpeaking v.11

Whisper

Flite + HTS

HSMM-FCN (MDN-HSMM)

WaveNet

StyleTTS 2

Clara

Music Transformer

SampleRNN

Jukebox

MusicLM

MusicGen

Stable Audio 2

Application/Task

Automatic Speech Recognition
(ASR, STT)

Automatic Speech Recognition
(ASR, STT)

Speech Synthesis (TTS)

Speech Synthesis (TTS)

Speech Synthesis (TTS)

Speech Synthesis (TTS)

Music Generation (symbolic)

Music Generation (symbolic)

Music Generation (audio)

Music Generation (audio)

Music Generation (audio)

Music Generation (audio)

Music Generation (audio)

Year

2010

2022

2012

2016

2016

2023

2018

2018

2017

2020

2023

2023

2024

Architectures and methods

“Pre-NN Era”: GMM-HMM (Hidden Markov Models + Gaussian
Mixtures)

Transformer encoder-decoder + small CNN front-end

“Pre-NN Era”: HSMM + parametric synthesis

“Early NN era”: FCN (MLP) + HSMM + vocoder synthesis

Causal dilated CNN

Transformer (text encoder) + CNN (style encoder) + FCNs
(duration/prosody) + CNN GAN (decoder/vocoder)

LSTM

Transformer (relative attention)

RNN (hierarchical) + FCN

CNN VQ-VAE + Transformers (priors & upsamplers)

Transformer (semantic + acoustic) + CNN AE (SoundStream)

Transformer (generation) + CNN AE (EnCodec)

CNN AE + Diffusion with Transformer backbone (DiT)

Representations

MFCC > Phonemes - Text

Mel-spectrogram - Text tokens

Text labels » Phonemes > MFCC/FO >

LPC synthesis

Text labels » Phoneme/state features

> Acoustic params

Text (conditioning) > p-law 8-bit
waveform (PCM)

Text > Acoustic features (dur/prosody

+ style) > Mel-spectrogram

MIDI tokens

MIDI tokens

Quantized waveform samples (u-law),

hierarchical RNN states
VQ-VAE codes (multi-level)

Semantic embeddings (MulLan),
Acoustic tokens (SoundStream)

Acoustic tokens (EnCodec),
Conditioning: Text embeddings /
acoustic tokens (melody)

STFT-based latent embeddings

Team

Nuance / Dragon

OpenAl

CMU + Nagoya Inst. of
Technology (HTS)

Nagoya Inst. of Technology (HTS)

DeepMind

NTU Singapore
OpenAl (Christine McLeavey

Payne)
Google Magenta

Mila (Université de Montréal)

OpenAl

Google Research + IRCAM

Meta Al (FAIR)

Stability Al



System
Dragon NaturallySpeaking v.11

Application/Task:
Automatic Speech Recognition (ASR, STT)

Architectures and methods
“Pre-NN Era”

Proprietary - probably GMM-HMM

(Hidden Markov Models + Gaussian Mixtures)

Representations
MFCC > Phonemes - Text

Team
Nuance / Dragon

Year

2010
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System

Flite + HTS

Application/Task:
Speech Synthesis (TTS)

Architectures and methods
“Pre-NN Era” - HSMM + parametric synthesis

Representations
Text labels » Phonemes > MFCC/FO0
> LPC synthesis > Waveform

Team
CMU + Nagoya Inst. of Technology (HTS group)

Year

2012



Tied neural networks
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System

Output
Dilation = 8

Hidden Layer
Dilation = 4

Application/Task: Distion 2

Hidden Layer
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Input

Architectures and methods

Re p rese ntatlo n S WAVENET: A GENERA E MODEL FOR RAW AUDIO

Aiiron van den Oord Sander Dieleman Heiga Zen'
Karen Simonyan Oriol Vinyals Alex Grave

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sediclem. heigazen, simonyaa. inyals, gravesa, nalk. ndrewsenior, korayk} @google.com
Google DecpMind, London. U
1 Google, London. UK

Team

Residual
ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and auOrEEIEsSive, with the predic-
tive distribution for cach audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state of-
performance, with human listeners rating it as significantly more natural
 than the best parametr and concatenative systems for both English and
Mandarin. A single WaveNet can capture the ¢l teristics of many different
with equal fidelity, and can switch between them by conditioning on the
sp i he ned to model music, we find that it generates novel and
often highly realistic music fragments. W Iso show that it can be mployed as
a discriminative model, returning promising results for phoneme recognition.

.SD] 19 Sep 2016

[es

Output

"

Year

1 INTRODUCTION

This work explores raw audio generation Lechniques, inspired by recent advances It neural autore-
gressive generauve models that model complex distributions su as images (van den Oord et al.,
S016a:b) and text (Jozefowicz et al 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state- f-the-art generation.

arXiv: 1609.03499v

Remarkably, these chitectures are able ©© model distributions over thousands of random variables
(c.g. 6464 pixels as in PixeRNN (van den Oord et al.. 2016a)). The question th paper addresses
is whether similar approaches can succe d in generating wideband raw audio W eforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

MR (O

Figure 1: A second of generated speech.

Causal
Conv

Input

This paper introduces WaveNet, an audio generative model based on the PixelC (van den Oord
ct al., 2016a:b) architecture. The main contributions of this work are as follows:

biective naturalness never
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D q self-attention, has achieved compelling
& sults in many generati sk require maintaining long-range coherence,
o This suggests that self- ttention might also be wel ited to modeling mu:
— In musical compx 1 and performance. however, relative timing is critic y
important. Existing approaches for representing relative positional information
e in the Transformer modulate attention based on pairwise distance (Shaw et al,,
O/ 2018). This is impracf for long sequences such as mus compositions since
Te a m their memory complexity for intermediate relative information is quadratic in the

sequence length, We Propose an algorithm that reduces their intermediate memory
requirement to linear in the sequence length. This enables us to demonstrate that a
Transformer with our modified relative i “hanism can generate minute-
long compositions (thousands C ur times the length modeled in Oore et al.
(2018)) with compelling structure, generate continuations that coherently elaborate
on a given mo nd in a seq2seq elup generate accompaniments conditioned on
! former with our relative attention mechanism on
. JSB Chorales and Piano-e-Competition, and obtain state-of-the-art

results on the latter,
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ABSTRACT

In this paper we Propose a novel model for unconditional audio generation based
on generating one audio sample at a time. We show that our model, which profits
from combining memory-less modules, name auloregressive multilayer percep-
. and stateful recurrent neural networks in a hierarchical structure is able to
capture underlying sources of ariations in the temporal sequences over very long
time Spans, on three datasets of ferent nature. Human evaluation on the gener-
i 1is preferred over competing models. We also

-1 component of the model contri butes to the exhibited performance.

I INTRODUCTION

Audio generation is a ¢f allenging task at the core of many problems of interest, such as text-to-
Speech synthesi SIC synthesis and voice conversion. The particular difficulty of audio generation
is that there is often a very large discrepancy between the dimen: nality of the the raw 4

and that of the effective semantic-leve] s S synth

typically interested in eene, .
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Abstract period of seconds. Hence, turning a single text caption into
a rich audio sequence ith long-term structure and many
stems, such as a MusIc clip. remains an open challenge.

Team

LM, a model for generating
m text descriptions such as

ody backed by a distorted gui- Audiol.M (Bor 022) has recently been proposed

tar riff . the process of condi- s 4 framework for audio generation. Casting audio synthe-

tional music generation as a hie archical sequence- sis as a language modeling task in a discrete Tepre ntation

s i and it generates music space, and leveraging a hierarchy of coarse-to-fine andio

¢ consistent over several mi- discrete units (or tokens), Andiol.M achieves both high-

s. Our experiments show that Musicl.M out- fidelity and long-term coherence over dozens of seconds.

Ye a r performs previous systems both in audio quality Moreover, by making no assumptions about the content

and adherence to the text descriptions. Moreover, of the audio signal. AudioLM learns to generate realistic
we demonstrate that Mu LM can be conditioned audio from audio-only corpora, be it speech or piano MUSIC,
on both text and a melody in that it can transform without any annotation. The ability to model diverse sign
whistled and hummed melodies according to the E that such a system could generate richer outputs
cribed in a text caption. To support fu- if on the appropriate data.
e publicly release MusicCaps. a
d of 5.5k music-text pair with
rich text descriptions pro ided by human experts.

s the inherent difficulty of synthesizing high-quality
and coherent audio, another impeding factor is the scarcity
of paired audio-text data. T in stark contrast with the
image domain. here the availability of mi
contributed significantly to the remarkable image generation

1 has recently been ¢ hieved (Ramesh et al., 2(
- -y i1 ot @ y. Moreover,
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rChlteCtUI’eS and methOdS Abstract

We tackle the task of conditional music generation. We introduce MUSICGEN, a sin-
gle Language Model (LM) that operates over several streams of compressed discrete
music representation, i.e., tokens. Unlike prior work, MUSICGEN is comprised of
a single-stage transformer LM together with efficient token interleaving patterns,
which eliminates the need for cascading several models, e.g., hierarchically or up-
sampling. Following this approach, we demonstrate how MUSICGEN can generate
high-quality samples, both mono and stereo, while being conditioned on textual
description or melodic features, allowing better controls over the generated output.
We conduct extensive empirical evaluation, considering both automatic and human
studies, showing the proposed approach is superior to the evaluated baselines on a
standard text-to-music benchmark. Through ablation studies, we shed light over
the importance of each of the components comprising MusICGEN. Music samples,
code, and models are available at gi(hub.com/facebookresearch/audiocraft.
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1 Introduction

52

Text-to-music is the task of generating musical pieces given text descriptions, .., «9(s rock song with
a guitar riff”. Generating music is a challenging task as it requires modeling long range sequences.
Unlike speech, music requires the use of the full frequency spectrum [Miiller, 2015]. That means
sampling the signal at a higher rate, i.c., the standard sampling rates of music recordings ar 44.1
kHz or 48 kHz vs. 16 kHz for speech. Moreover, music contains harmonies and melo

different instruments, which create complex structures. Human listeners are highly sensitive to
disharmony [Fedorenko et al., 2012, Norman-Haignere etal., 2019], hence generating music does not
leave a lot of room for making melodic errors. Lastly, the ability to control the generation process in
a diverse set of methods, €.g., key, instruments, melody, genre, etc. is essential for music creators.

1rXiv:2306.0

c
C

Team

Recent advances in self-supervised audio representation learning [Balestriero et al 3], sequential
modeling [Touvron et al., 20 and audio synthesis [Tan et al., 2021] provide the conditions to
develop such models. To make audio modeling more tractable, recent studies proposed representing
audio signals as multiple streams of discrete tokens representing the same signal [Défossez et al.,
2022]. This allows both high-quality audio generation and effective audio modeling. However, this
comes at the cost of jointly modeling several parallel dependent streams.

Kharitonov et al. [2022], Kreuk et al. [2022] proposed modeling multi-streams of speech tokens in
Ye a r parallel following a delay approach, i.e introduce offsets between the different streams Agostinelli
et al. [2023] proposed representing mus cal segments using multiple sequences of discrete tokens at
different granularity and model them using a hierarchy of autoregressive models. In parallel, Donahue
et al. [2023] follows a similar approach but for the task of singing to accomp iment generation.
Recently, Wang et al. [2023] proposed tackling this problem in two stages: (i) modeling the first
e

“Yoss S ated with both The Hebrew University of Jerusalem & MetaAlL

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Audio-based generative models for music have seen great
not managed to produce

from text prompts, We show that by training a generatve Fom

model on long temporal contexts it is possible to produce 9 200

Tong-form music of up to 4m45 ! Duration

di n-transformer operating on a highly ¢ Figure 1: Cumulaiive histogram showing the proportion

continuous latent representation {Jatent rate of ). of music that is less than a particular length, for a rep-
of-the-art generations according to met- resentative sample of popular music!. Dotted lines: pro-

rics on audio quality and prompt alignment, anc ubjective portion associated with the max generation length of our

tests reveal that it produces full-length music with coherent d of previou models (90s). The vertical

structure. ax vith a power law for greater readability.
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1. INTRODUCTION

s

Conv

In previous works [4,20] it has been hypothesized that
Generation of musical audio using deep learning has been mantic tokens enable long-term structural coherence,
active area of 1 in the last decade. Initially, while modeling the acou: tokens conditioned on the
were primarily Wi nditional semantic tokens enables high-quality audio s > [20).
ical audio [1.2]. Subsequently, attention Semantic tokens are G arying embeddings derived
chifted towards conditioning mode directly on musical from text embeddings, aiming (0 capture the overall
focused on adding natural characteristics and evolution of music at a high level. This
tioning [4-7], and then im- interme:
proving these architectures i terms of computational com- at low temporal resolut
plexi [8-11]. quality [12-15) or controlability 16-19]. employed 10 pr dict acoustic embedd:ng.\.‘ whi
Existing text-conditioned mo have generally been utilized for waveform reconstruction.”Semantic toks
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ined on relatively short segments of music, commonly “01?““1011‘)" used in auloregre:
. A syidance on what and when to
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