

● TheWolfSound.com
● youtube.com/@WolfSoundAudio
● WolfTalk podcast host
● JUCE YouTube channel creator
● ADC Mentor

2

Jan Wilczek
[Yan Vil-check]

http://thewolfsound.com
http://youtube.com/@WolfSoundAudio

● BogrenDigital.com
● FascinationStreet.se
● Former mixing/editing engineer
● Ihsahn, James LaBrie, many more…
● Now: Plugin/DSP developer

Linus Corneliusson

http://bogrendigital.com
http://fascinationstreet.se

Is it your first time at ADC?

ⓘ
Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

4

https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6IjExNTg5ZTMzLTY4ZWMtNDc5YS05ZTIzLWI1NzdhNTEyNGIwMiIsInByZXNlbnRhdGlvbklkIjoiMU92ZTl3ZTZSTEVHcURaS3RHNTlENlgxRFlUUGlBUVRUaWc3RFlCc25QWEEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTI4ODU1NTMwN18wIiwidGltZWxpbmUiOlt7InNob3dSZXN1bHRzIjp0cnVlLCJwb2xsUXVlc3Rpb25VdWlkIjoiZDJkODRjOGMtMjliOS00MmI2LTk1ZmMtMWUyOGE3NTgyNmU4In1dLCJ0eXBlIjoiU2xpZG9Qb2xsIn0%3D
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii
https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D

Outline

1. Getting the code to run
2. Plugin from scratch: Part I

a. with DSP research
3. Plugin from scratch: Part II

a. with the Python prototype
4. Surprise 1
5. Break at 3 PM
6. Plugin from scratch: Part III

a. with C++/JUCE implementation
7. Summary
8. Surprise 2
9. Surprise 3

5

6

"Create a flanger as
a VST3 plugin.

You have 24 hours."

Demo
What we'll create today

Task 0: Make the code run

Repo: github.com/JanWilczek/adc25-workshop

Goal: Execute these two commands:

● python py/main.py data/guitar_5th.wav 
● cmake --build --preset default 

➡ "Getting Started" section of the README file

8

https://github.com/JanWilczek/adc25-workshop

GitHub Codespaces: Fork the repo with all branches

9

Overview of the plugin creation process

10

Overview of the plugin creation process

11

Idea

● What do you want to create?
● Why? How is it useful?
● For whom is it useful?
● Can I explain the above in plain words?

12

13

"Create a flanger as
a VST3 plugin.

You have 24 hours."

Idea

Plugin we'll implement today: Flanger

Input:

Output:

14

Research

● Has anyone done it before?
● Is there a baseline

(a plugin or a piece of code that does a similar thing)?
● How to do it (better)?
● End goal: a design

15

Research sources

● Books
● Research papers
● Online blogs & videos
● Online forums
● External consultancy

16

Examples of good resources

● Books
○ Digital Audio FX by Udo Zölzer et. al.
○ Designing Audio Effect Plugins In C++ by Will Pirkle

● Papers
○ DAFX conference
○ Audio Engineering Society library
○ Google Scholar

● Online blogs & videos
○ WolfSound 🐺

17

Examples of good resources

● Forums
○ JUCE forum
○ KVR Audio developer forum
○ DSP subreddit
○ DSP Stack Exchange
○ DIYStompBoxes
○ lines forum

18

Design

● DSP diagram
● Difference equations
● Textual description
● Literature reference

○ ”We will implement equations X-Y from paper Z”

19

Literature review

Udo Zölzer et. al.
Digital Audio FX
2nd ed. (2011)

20

Literature review

J. Dattoro. Effect design, part 2:
Delay-line modulation and chorus.
J. Audio Eng. Soc., 45(10): 764–788,
October 1997.

21

LFO: bipolar vs unipolar

bipolar LFO unipolar LFO
22

Task 1: Write down flanger update equations

23

Update equations

3. Output sample

2. Helper sample

1. Modulated-delay value

24

Prototype

● Goal: Quick creation of the desired effect for validation
● Technologies used:

○ Graphical
■ PureData
■ Max/MSP

○ Interpreted
■ Python
■ Matlab

○ Domain-specific languages (DSLs)
■ Faust
■ SuperCollider

○ ?

25

Task 2: Prototype

1. git checkout task2a
2. Run python py/main.py data/saw200.0Hz5.0s.wav and check

that audibly the output signal is the same as the input signal
3. Inspect the spectrograms generated in the output folder. Are they

identical visually?
4. Properly initialize the Flanger class instance
5. Implement flanger update equations without the LFO in

process_sample() in flanger.py
6. Add an LFO

26

Surprise 1

27

Break
Until 3:15 PM

Implementation (the DSP part)

● Typically done in C++ with JUCE
● Other options:

○ C?
○ JavaScript?
○ Rust?
○ ?

29

Implementation (the DSP part)

● Start with mono first
● Disregard parameter smoothing
● Focus on correctness, ignore optimization
● Generic GUI

○ e.g., juce::GenericAudioProcessorEditor
● End-2-end verification tests

30

C++ implementation tips

● Use github.com/JanWilczek/audio-plugin-template
○ Treat warnings as errors

● Keep the design flexible
● Commit early, commit often (but double-check what you commit)
● Use end-2-end unit tests (e.g., wolfsound::ProcessorFileIoTest)
● Unit-test what you can
● Don’t be afraid of writing pseudocode
● Use juce::juce_dsp-like interface for easy composability

○ process(const ProcessContext&)
○ prepare()
○ reset()

31

http://github.com/JanWilczek/audio-plugin-template

32

C++ implementation: class diagram

33

Task 3: Implementation part 1

1. git checkout task3a
2. Build the C++ project
3. Run the end-2-end test
4. Test in a DAW
5. Implement Flanger member functions

a. constructor
b. reset()
c. prepare()
d. processSample()

6. Make the end-2-end test produce the same result as fixed-delay
Python code

34

Tweaking parameters/experimentation

● "dev" parameters and "user" parameters
○ dev parameters will be fixed before releasing the plugin and inaccessible to the

user
● Explore!

○ Expand the "allowed" range of parameters
○ Make some parameters unrealistic
○ "Model bending"

35

Task 4: Implementation part 2

1. git checkout task4a
2. Add an LFO (e.g., juce::dsp::Oscillator) and check again the

end-2-end test against Python output
3. Make parameters (LFO frequency) adjustable

a. Create a Flanger::Parameters struct
b. Create a setter for the parameters
c. Set the parameters in processBlock()
d. Create an AudioProcessorValueTreeState
e. Add the LFO frequency parameter to the plugin

4. Return a juce::GenericAudioProcessorEditor in
PluginProcessor::createEditor()

5. Test in a DAW
6. Make stereo using JUCE’s ProcessorDuplicator

36

Field testing (beta testing, validation)

● Give the plugin to a representation of your user base
● In the worst case: test it just yourself

37

Iteration on the design/implementation

● Should we improve the design or the implementation?
○ Design 👉 back to the research phase
○ Implementation 👉 code tuning (optimization) according to well-defined metrics

● Establish approval metrics/criteria:
○ What is the desired behavior for a particular signal?
○ Is there a baseline that a particular use case should match?
○ Are any signal types problematic?
○ Are certain parameter configurations problematic?
○ Are certain signal elements problematic (e.g., transients, decays)?
○ How fast a piece of code should be?

38

39

What we didn't cover

● Business side of plugin creation
○ Will my plugin sell?
○ Packaging for distribution
○ Selling
○ Distribution

● Code optimization (tuning)
● Presets
● Undo & redo
● …

40

Where to get more info on DSP & plugin dev

● WolfSound blog: TheWolfSound.com
● WolfSound YouTube: www.youtube.com/@WolfSoundAudio
● DSP Pro online course on learning digital signal processing for audio

programming: wolfsoundacademy.com/dsp-pro
○ 20% special offer discount with promo code:

ADC25_WORKSHOP (valid until December 10)
● Workshop feedback: jan.wilczek@thewolfsound.com

41

https://thewolfsound.com
https://www.youtube.com/@WolfSoundAudio
https://wolfsoundacademy.com/dsp-pro

42

Where to get more info on DSP & plugin dev

● WolfSound blog: TheWolfSound.com
● WolfSound YouTube: www.youtube.com/@WolfSoundAudio
● DSP Pro online course on learning digital signal processing for audio

programming: wolfsoundacademy.com/dsp-pro
○ 20% special offer discount with promo code:

ADC25_WORKSHOP (valid until December 10)
● Workshop feedback: jan.wilczek@thewolfsound.com

43

https://thewolfsound.com
https://www.youtube.com/@WolfSoundAudio
https://wolfsoundacademy.com/dsp-pro

"The venue team will now be transforming the conference space ready for the
evening activities including the ADC Quiz, and therefore the main Bristol Suite will
be unavailable.

Please use the next 1.5 hours for networking.

The bar in the Empire Lobby - downstairs from this room - and another bar in the
registration area are now open and serving alcoholic and soft drinks.

Alternatively, go through to the main hotel bar area via the shortcut at the back of
this room (Conservatory) - please refer to the venue maps you were given at
registration, or ask the volunteer team.

The JUCE team will be hanging out in the hotel bar talking all things JUCE and happy
to take questions and discuss JUCE-related issues..

In general, please make use of the full space available.

An evening meal will be served in the Bristol Suite from 18.30 (6.30pm) and the
ADC Quiz will follow around 19.00 (7pm)."

44

