WORKSHOP:

DSP IN PRACTICE

FROM BLOCK DIAGRAM TO WORKING PLUGIN

JAN WILCZEK &
LINUS CORNELIUSSON

X

WoltSound DSPPro (&S

e TheWolfSound.com

e youtube.com/@WolfSoundAudio

e WolfTalk podcast host

e JUCE YouTube channel creator Jan Wilczek
e ADC Mentor [Yan Vil-check]

JUCE

http://thewolfsound.com
http://youtube.com/@WolfSoundAudio

BOGREN

T A L

BogrenDigital.com
FascinationStreet.se
Former mixing/editing engineer Linus Corneliusson
Ihsahn, James LaBrie, many more...

Now: Plugin/DSP developer

http://bogrendigital.com
http://fascinationstreet.se

slido

Is it your first time at ADC?

0 Click Present with Slido or install our Chrome extension to activate this
poll while presenting.

https://www.sli.do/features-google-slides?payload=eyJwb2xsVXVpZCI6IjExNTg5ZTMzLTY4ZWMtNDc5YS05ZTIzLWI1NzdhNTEyNGIwMiIsInByZXNlbnRhdGlvbklkIjoiMU92ZTl3ZTZSTEVHcURaS3RHNTlENlgxRFlUUGlBUVRUaWc3RFlCc25QWEEiLCJzbGlkZUlkIjoiU0xJREVTX0FQSTI4ODU1NTMwN18wIiwidGltZWxpbmUiOlt7InNob3dSZXN1bHRzIjp0cnVlLCJwb2xsUXVlc3Rpb25VdWlkIjoiZDJkODRjOGMtMjliOS00MmI2LTk1ZmMtMWUyOGE3NTgyNmU4In1dLCJ0eXBlIjoiU2xpZG9Qb2xsIn0%3D
https://chrome.google.com/webstore/detail/slido/dhhclfjehmpacimcdknijodpjpmppkii
https://www.sli.do/features-google-slides?interaction-type=TXVsdGlwbGVDaG9pY2U%3D

Outline

LON oUlle W ME

Getting the code to run

Plugin from scratch: Part I
a. with DSP research

Plugin from scratch: Part II
a. with the Python prototype

Surprise 1
Break at 3 PM

Plugin from scratch: Part III
a. with C++4+/JUCE implementation

Summary
Surprise 2
Surprise 3

"Create a flanger as
a VST3 plugin.

You have 24 hours."”

Demo

What we'll create today

Task 0: Make the code run

Repo: github.com/JanWilczek/adc25-workshop

Goal: Execute these two commands:

e python py/main.py data/gquitar_5th.wav
e cmake —-build —-preset default

"Getting Started” section of the README file

https://github.com/JanWilczek/adc25-workshop

GitHub Codespaces: Fork the repo with all branches

Create a new fork

A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes without
affecting the original project existing f

Required fields are marked with an asterisk (*).

Owner * Repository name *

Choose an owner ~ / adc25-workshop

By default, forks are named the same as their upstream repository. You can customize the name to
distinguish it further.

Description

Companion repository to the Audio Developer Conference 2025 "DSP in Practice" workshop

86 [350 characters

Copy the main branch only

Contribute back to JanWilczek/adcp5-workshop by adding your own branch. Learn e.

Create fork

Overview of the plugin creation process

Idea

Research

Design

Prototype

Implementation

Tweaking

Field
testing

) Iteration

10

Overview of the plugin creation process

Idea

Research

Design

Prototype

Implementation

Tweaking

Field
testing

Iteration

11

Idea

What do you want to create?

Why? How is it useful?

For whom is it useful?

Can I explain the above in plain words?

12

"Create a flanger as
a VST3 plugin.

You have 24 hours."”

13

Idea

Plugin we'll implement today: Flanger

| Options |

Input:

LFO frequency

Output: «

Workshop Flanger

14

Research

e Has anyone done it before?
e Is there a baseline
(a plugin or a piece of code that does a similar thing)?
e How to do it (better)?
e End goal: a design

15

Research sources

Books

Research papers
Online blogs & videos
Online forums
External consultancy

16

Examples of good resources

e Books

o Digital Audio FX by Udo Zblzer et. al.

o Designing Audio Effect Plugins In C++ by Will Pirkle
e Papers

o DAFX conference

o Audio Engineering Society library

o Google Scholar
e Online blogs & videos

o WolfSound %%

17

Examples of good resources

e Forums

o JUCE forum
KVR Audio developer forum
DSP subreddit
DSP Stack Exchange
DIYStompBoxes
lines forum

o O O O O

Design

DSP diagram
Difference equations
Textual description

Literature reference
o "We will implement equations X-Y from paper Z”

19

Literature review

Udo Zolzer et. al.
Digital Audio FX

MOD(n)
2nd ed. (2011) | ”
y(n)
z—[M(n) + frac(n)]
x,(n—K)
FB g
X
BL FF FB DELAY DEPTH MOD
Vibrato 0 | 0 0 ms 0-3 ms 0.1-5 Hz sine
Flanger 0.7 0.7 0.7 0 ms 0-2 ms 0.1-1 Hz sine
(White) Chorus 0.7 | (=0.7) 1-30 ms 1-30 ms Lowpass noise
Doubling 0.7 0.7 0 10-100 ms 1-100 ms Lowpass noise

20

Literature review

J. Dattoro. Effect design, part 2:
Delay-line modulation and chorus.

J. Audio Eng. Soc., 45(10): 764-788,
October 1997.

blend

-(x)
oS

vibrato
-—

feedforward
<)

&)
—» modulating tap

tap center
x[n] 3
Z
same tap center

N

feedback
-~(X)

NS

a fixed tap

Table 7. Approximate effect delay range in milliseconds.

Effect Blend Feedforward Feedback
Vibrato 0.0 1.0 0.0
Flanger 0.7071 0.7071 -0 7071
Industry standard

chorus 1.0 0.7071 0.0
White chorus 0.7071 1.0 0.7071
Doubling 0.7071 0.7071 0.0
Echo®? 1.0 <1.0 <1.0

Effect Onset Nominal Range End
Vibrato®3 0 Minimal 5
Flange 0 1 10
Chorus 1 5 30
Doubling 10 20 100
Echo 50 80 X 24

LFO: bipolar vs unipolar

. N . N
amplitude amplitude

NANA
[RVAVAYAVAS

bipolar LFO unipolar LFO

22

Task 1: Write down flanger update equations

blend

>

SLFO,u.nipola,r [n]

z[n] o »(T

g

zh[n)

D zp[n — m]

feed forward

0 y[n]

<

zp[n — D/2]

<

feedback

D

23

Update equations

3. Output sample
y|[n] = blend x,|n] + feedforward x;,|n — m|

2. Helper sample
zp|n| = x|n] 4 feedback x,|n — D/2]

1. Modulated-delay value

M = SLFO,unipolar [n] D

24

Prototype

e Goal: Quick creation of the desired effect for validation

e Technologies used:

o Graphical
m PureData
m Max/MSP

o Interpreted
m Python
m Matlab

o Domain-specific languages (DSLSs)
m Faust

m SuperCollider
o ?

25

Task 2: Prototype

o

git checkout task2a

Run python py/main.py data/saw200.0Hz5.0s.wav and check
that audibly the output signal is the same as the input signal
Inspect the spectrograms generated in the output folder. Are they
identical visually?

Properly initialize the Flanger class instance

Implement flanger update equations without the LFO in
process_sample() in flanger.py

Add an LFO

26

Surprise 1

27

Break

Until 3:15 PM

Implementation (the DSP part)

e Typically done in C++ with JUCE

e Other options:
C?
JavaScript?

Rust?
?

o O O O

29

Implementation (the DSP part)

Start with mono first

Disregard parameter smoothing

Focus on correctness, ignore optimization
Generic GUI

o e.g., juce::GenericAudioProcessorEditor
End-2-end verification tests

30

C++ implementation tips

Use github.com/JanWilczek/audio-plugin-template
o Treat warnings as errors

Keep the design flexible

Commit early, commit often (but double-check what you commit)
Use end-2-end unit tests (e.g., wolfsound: :ProcessorFileIoTest)
Unit-test what you can

Don’t be afraid of writing pseudocode

Use juce: :juce_dsp-like interface for easy composability
o process(const ProcessContext&)
o prepare()
o reset()

31

http://github.com/JanWilczek/audio-plugin-template

BUILDING A PLUGIN ASSEMBLY LINE
THE ROAD TO RAPID PLUGIN DEVELOPMENT ADC+

[EEXE ANTIPIRACY

iLDK
Focusrite' .ﬁlﬂ'l‘! gJUCE

> DREAMTONICS [L=4COUSTICS

@) e pugiotonix unie

¥ Roland (A SUFERTOM

e i () seinberg W
» \ r [CX.'I)

CHOREY DELAV

. = = “‘c é» ,) . :
= ‘ﬁ LJ\DKNOE et 3

O CRN o Gl R WA R

C++ implementation: class diagram

’@ PIuginProcessor‘

©GenericAudioProcesw
/ N

A @ Parameters

’@FractionalDelayLine ‘ ©0$cillator‘

o IfoFrequency

33

Task 3: Implementation part 1

git checkout task3a
Build the C++ project
Run the end-2-end test
Test in a DAW

Implement Flanger member functions

a. constructor

b. reset()

c. prepare()

d. processSample()

6. Make the end-2-end test produce the same result as fixed-delay

Python code

bk

34

Tweaking parameters/experimentation

e "dev" parameters and "user" parameters
o dev parameters will be fixed before releasing the plugin and inaccessible to the
user
e Explore!
o Expand the "allowed" range of parameters

o Make some parameters unrealistic
o "Model bending"

35

Task 4: Implementation part 2

o U

git checkout task4a

Add an LFO (e.g., juce: :dsp::0scillator) and check again the
end-2-end test against Python output

Make parameters (LFO frequency) adjustable
a. Create a Flanger: :Parameters struct

b. Create a setter for the parameters

c. Set the parameters in processBlock()

d. Create an AudioProcessorValueTreeState

e. Add the LFO frequency parameter to the plugin

Return a juce: :GenericAudioProcessorEditor in
PluginProcessor::createEditor()
Test in a DAW

Make stereo using JUCE's ProcessorDuplicator

36

Field testing (beta testing, validation)

e Give the plugin to a representation of your user base
e In the worst case: test it just yourself

37

Iteration on the design/implementation

e Should we improve the design or the implementation?

(@)

(@)

Design ¢r back to the research phase
Implementation ¢~ code tuning (optimization) according to well-defined metrics

e Establish approval metrics/criteria:

(@)

o O O O O

What is the desired behavior for a particular signal?

Is there a baseline that a particular use case should match?

Are any signal types problematic?

Are certain parameter configurations problematic?

Are certain signal elements problematic (e.g., transients, decays)?
How fast a piece of code should be?

38

MLC S_Zero 93
POSHENVS

Default Preset

0o MLCS_zero 93 oo
S_ZERO-9.5° Default Preset BOGREN f S__ZERO-9.4°

A ’
ocTave1 ocTavea

ASCLNA"‘H@N
STREE®=-
ovb-2

P
(@)

uom

o

VOLUME MASTER

v . v
sass mpoLs Teesie
) i) - =

SILENOZ SIGNATURE
ULTRA-QUALITY @

ULTRA-QUALITY @

What we didn't cover

e Business side of plugin creation
o Will my plugin sell?
o Packaging for distribution
o Selling
o Distribution

Code optimization (tuning)
Presets
Undo & redo

40

Where to get more info on DSP & plugin dev

e WolfSound blog: TheWolfSound.com
e WolfSound YouTube: www.youtube.com/@WolfSoundAudio
e DSP Pro online course on learning digital signal processing for audio

programming: wolfsoundacademy.com/dsp-pro
o 20% special offer discount with promo code:
ADC25_WORKSHOP (valid until December 10)

e Workshop feedback: jan.wilczek@thewolfsound.com

41

https://thewolfsound.com
https://www.youtube.com/@WolfSoundAudio
https://wolfsoundacademy.com/dsp-pro

'y /
Y
¢

\ \ THE OFFICIAL JUCE AUDIO PLUGIN
B DEVELOPMENT COURSE IS HERE
AND ITS FREE..

’

o
(% JAN WILCZEK & TOM POOLE
\\

ADCs

Where to get more info on DSP & plugin dev

e WolfSound blog: TheWolfSound.com
e WolfSound YouTube: www.youtube.com/@WolfSoundAudio
e DSP Pro online course on learning digital signal processing for audio

programming: wolfsoundacademy.com/dsp-pro
o 20% special offer discount with promo code:
ADC25_WORKSHOP (valid until December 10)

e Workshop feedback: jan.wilczek@thewolfsound.com

43

https://thewolfsound.com
https://www.youtube.com/@WolfSoundAudio
https://wolfsoundacademy.com/dsp-pro

"The venue team will now be transforming the conference space ready for the
evening activities including the ADC Quiz, and therefore the main Bristol Suite will
be unavailable.

Please use the next 1.5 hours for networking.

The bar in the Empire Lobby - downstairs from this room - and another bar in the
registration area are now open and serving alcoholic and soft drinks.

Alternatively, go through to the main hotel bar area via the shortcut at the back of
this room (Conservatory) - please refer to the venue maps you were given at
registration, or ask the volunteer team.

The JUCE team will be hanging out in the hotel bar talking all things JUCE and happy
to take questions and discuss JUCE-related issues..

In general, please make use of the full space available.
An evening meal will be served in the Bristol Suite from 18.30 (6.30pm) and the
ADC Quiz will follow around 19.00 (7pm)."

44

