
rutvij.trivedi@siliconsignals.io +91-94087 30545

About Me
Co-Founder & M.D. of Silicon Signals Pvt. Ltd.​ (Guj, IN)

Built a team which contributes to open source e.g Linux, ZephyrOS,

AOSP, U-boot ​

Over decade of diverse experience in Embedded Product

Engineering, Software Development, and Embedded System

Development​

Consumer, Healthcare, IOT, Audio, Multimedia/Camera, Automotive

and many more products ​

Opus, high quality, high bitrate = IVI (infotainment)

G.729, low power, low latency = eCall (safety)

Motivation

Opus

G.729

In Linux ALSA - ASOC

User-space snd_pcm_hw_params() → ASoC DPCM FE handler → dpcm_be_dai_hw_params() →

snd_soc_dai_hw_params() → codec driver registers are programmed.

Once you call hw_params(), the codec is fixed. If you need a different codec, ALSA forces you to stop the

stream and reopen it

This means,

No runtime switching 100 ms dropout 10–15% CPU spike

The Problem Today

Userspace Transcoding

Uses CPU for re-encoding/decoding

Power hungry, adds latency

Multiple ALSA Devices

One PCM device per codec

No seamless runtime switching

Restarting PCM Stream

Tear down & reopen stream with new codec

Causes >100 ms dropouts, unsafe for eCall

🚫 None of these approaches meet automotive latency, power, or safety requirements

What Engineers Tried So Far

/* Enum control to select codec */
static const char * const codec_texts[] = { "Opus", "G729" };
static SOC_ENUM_SINGLE_EXT(codec_enum, codec_texts);

static int codec_set(struct snd_kcontrol *kcontrol,
 struct snd_ctl_elem_value *ucontrol)
{
 int new_codec = ucontrol->value.enumerated.item[0];
 schedule_codec_switch(new_codec);
 return 0;
}

ALSA control
interface

Triple buffering
in SoC driver

Device Tree
profiles

Power-aware
codec scheduler

Proposed Architecture

Switching Concept

Runtime Codec Switch (Kernel)

S
C
H
E
D
U
L
E
R

Shadow Buffer

PCM Frames
1-256

PCM Frames
257-512

PCM Frames
513-768

Battery

Network
QoS

Safety
Priority

High Quality

Opus

G.729

Low Power

PCM

Low Latency

/* Prepare shadow buffer */
void prepare_shadow_buffer(struct codec_stream *codec,
 struct snd_pcm_substream *sub)
{
 fill_dma_buffer(codec->shadow_buf, sub);
}

/* Swap at frame boundary */
void switch_codec(struct codec_stream *old,
 struct codec_stream *new)
{
 wait_for_period_boundary();
 dma_set_buffer(new->shadow_buf);
 active_codec = new;
}

Switching Concept (cont.)

 DTS
sound {
 compatible = "fsl,imx-audio";
 model = "imx8mp-codec-switch";
 codecs {
 opus {
 power-mw = <25>;
 priority = <2>;
 };
 g729 {
 power-mw = <5>;
 priority = <1>;
 };
 };
};

Switching Concept (cont.)

Expected Benifits
Based on analysis of ALSA’s buffering and DMA timing, this approach could reduce gaps to under a frame

boundary (10–20 ms).

CPU usage would also be lower than tearing down and rebuilding streams.

Better battery life

Meets safety requirements

Works with multiple codecs/SoCs

These are projected benefits, not measured results.

Synchronization at boundaries

Aligning PCM frames when switching mid-stream.

Risk of drift or sample loss if buffer overlap isn’t perfect.

Codec state management

Each codec has its own decode/encode context (Opus, G.729, etc.).

Preserving state during hot-switch is non-trivial.

ALSA framework changes

Current ALSA SoC PCM ops not designed for runtime codec switching.

Requires extending kernel APIs and DT bindings.

Fragmented SoC ecosystem (TI, NXP, Qualcomm all different DSP IP).

User-space integration (PipeWire/PulseAudio policies).

Challenges

Work Roadmap

Upstream to
ALSA

Codec topology
integration

Multiple codec
support

Policy integration
(PipeWire)

Kernel
Prototype

+91-94087 30545

rutvij.trivedi@siliconsignals.io

www.siliconsignals.io

