

@dynamic_cast

We are a

peer-to-peer study

group for under

represented groups

in programming

dynamic-cast.github.io

https://twitter.com/dynamic_cast
https://dynamic-cast.github.io/

Presentation slides

https://github.com/dynamic-cast/ADC25Web-UIs/wiki

https://github.com/dynamic-cast/ADC25-Web-UIs/wiki

You Will Be Hearing From…

Emma Fitzmaurice

Pauline Nemchak

Harriet Drury

Simeon Joseph

Anna Wszeborowska

You Will Be Hearing From…

https://docs.google.com/file/d/1cgXAAIXuKXJDusEv26h9MPirNmzU0d6i/preview

Workshop goals

● Learn about what webviews are
● Build a Web UI using modern web techniques
● Hook that UI up to a CMajor patch to create a plugin

Lets Get GUI

Plugin Standalone

Compositors - The GUI part of your OS

Windows - Desktop Window Manager DWM

MacOS  Quartz

Linux - X11/Wayland

GUI Libraries

SwiftUI

WinUI

GTK

Slint

JUCE Flutter

.net MAUI

Qt

Enter the Webview

Ever heard of the world wide web?

We can steal their toys

MacOS/Linux - WebKit

Windows - Edge WebView2

Webview Libraries

Is this like Electron?

Web Frameworks

Svelte

React

Angular

Vue

Ember

Lit

Why Use a Webview?

Yay Boo

- This is a well worn path
- Accessibility
- Testing
- Design tools
- Resources
- Developers

- Portability

- Optimisation
- Existing codebase
- “Donʼt wannaˮ

Front-end development

What weʼre going to build

Setting up the workshop project

● Go to the ADC25-Web-UIs workshop repository
https://github.com/dynamic-cast/ADC25-Web-UIs

git clone https://github.com/dynamic-cast/ADC25-Web-UIs.git

https://github.com/dynamic-cast/ADC25-Web-UIs

HTML

HyperText Markup Language

Defines the meaning and structure of web content

HTML

<html>

 <head>

 </head>

 <body>

 </body>

</html>

head

<head>

 <meta charset="UTF-8">

 <title>Document title</title>

 <link rel="stylesheet" href="./styles.css">

</head>

body

<body>

 <form action="/submission">

 <label for="name">Enter your name: </label>

 <input type="text" name="name" id="name"
required />

 </form>

</body>

Void Elements

 <input>

<meta>

<source>

Replaced Elements

<video>

<audio>
<iframe>

Project Structure

karplus_strong/main.cmajorpatch

"view": {

 "src": "ui/dist/index.js",

 …

}

rollup

ui/rollup.config.js

export default {

 input: 'index.js',

 output: {

 file: 'dist/index.js',

 format: 'esm', // can be cjs, esm, or iife

 },

 plugins: [resolve(), commonjs()],

};

package.json

 "scripts": {

 "build": "rollup -c",

 "watch": "rollup -c --watch"

 },

 "dependencies": {

 "lit": "^3.3.1"

 },

 "devDependencies": {

 "@rollup/plugin-commonjs": "^28.0.9",

 "@rollup/plugin-node-resolve": "^16.0.3",

 "rollup": "^4.52.5"

 }

ADC25Web-UIs/karplus_strong/ui

npm i

ADC25Web-UIs/karplus_strong/ui

npm run watch

Letʼs try it!

Go to karplus_strong/ui

npm i

npm run watch

ui/controls/KnobComponent.js

class KnobComponent {} returns svg

ui/controls/AmplitudeDisplay.js

class AmplitudeDisplay {} draws canvas

ui/controls/view.js ⇒ render(){}

class KarplusStrongInterface extends LitElement {}

article

<article></article>

— represents a self-contained composition in a document,
page, application, or site, which is intended to be
independently distributable or reusable. Examples
include: a forum post, a magazine or newspaper article,
or a blog entry, a product card, a user-submitted
comment, an interactive widget or gadget, or any other
independent item of content

VS Code

CTRL/Cmd + shift + P

Run patch

Browser

Right click on the element => inspect
element

Browser

Check out branch stage1

git checkout stage1

ui/controls/view.js ⇒ render(){}

<article class='main-panel'>

 <h1 class='title-section'>Karplus-Strong</h1>

</article>

ui/controls/view.js ⇒ render(){}

<h1 class='title-section'>Karplus-Strong</h1>

<section class='control-section'>

</section>

ui/controls/view.js ⇒ render(){}

<section class='control-section'>

 <div class='knob-container'
id='impulse-knob-container'></div>

 <div class='knob-container'
id='filter-knob-container'></div>

 <div class='knob-container'
id='feedback-knob-container'></div>

</section>

ui/controls/view.js ⇒ render(){}

<section class='control-section'>

 …

</section>

<section class='amplitude-display'></section>

ui/controls/view.js ⇒ render(){}

<section class='amplitude-display'>

 <canvas id="amplitude-canvas"
class="amplitude-canvas" width="${this.CANVAS_WIDTH}"
height="${this.CANVAS_HEIGHT}"></canvas>

</section>

ui/controls/view.js ⇒ render(){}

 …

 </section>

 <footer class="footer">

 </footer>

</article>

ui/controls/view.js ⇒ render(){}

<picture>

 <source srcset="ui/public/dynamic_cast_logo_light.png"
media="(prefers-color-scheme: light)" />

 <source srcset="ui/public/dynamic_cast_logo_dark.png"
media="(prefers-color-scheme: dark)" />

 <img height="70"
src="ui/public/dynamic_cast_logo_dark.png" alt="dynamic cast logo"
/>

</picture>

Optional] Check out branch stage2

git checkout stage2

CSS

CSS

Cascading Style Sheets

— stylesheet language used to describe the presentation of a
document written in HTML or XML (including XML dialects such as
SVG, MathML or XHTML. CSS describes how elements should be
rendered on screen, on paper, in speech, or on other media.

CSS

.header {

 background-color: #ffffff;

}

Box Model

Block boxes

Width, height properties are
respected, take 100% of available
width by default.

<p>, <h1>, <div>

Inline boxes

Width, height, top and bottom
margins will have no effect, the box
will not break onto a new line.

<a>, ,

Box Model

Margin box

Border box

Padding box

Content box

static styles = css``

* {

 box-sizing: border-box;

}

Selectors

* — universal selector (wildcard)

button, section, h1 — type selectors

.main-panel — class selector

#my-id — id selector

[href^="https"] — attribute selector

static styles = css``

* {

 box-sizing: border-box;

 user-select: none;

}

Dimensions: absolute

- px;
- unitless: 0.5 for opacity;
- percentages;
- cm — to print documents;
- many more;

Dimensions: relative

- em and rem: related to font-size;
- vw: 1% of viewport’s width;
- vh: 1% of viewport’s height;
- lvw: large viewpoint, relative to the viewport’s

visible space with all the optional browser UI
hidden;

static styles = css``

:host {

 width: 100%;

 height: 100%;

}

Pseudo-classes

- Element display state (:fullscreen,
:picture-in-picture)

- Input (:disabled, :checked)
- Location (:visited, :link)
- Resource state (:paused, :muted)
- Tree structure (:root, :first-child)
- Shadow structure (:host)
- User action (:hover, :focus)
- Functional (:has(), :not())

static styles = css``

.main-panel {

 width: 100%;

 height: 100%;

}

Display

Outer display type: whether it’s inline or block, how it
behaves with other elements (flow layout).

Inner display type: change layout of children elements.

Normal flow of the elements: for English top to bottom,
left to right.

Display: flex

CSS flexbox defines a CSS box model, the
layout of items in one dimension.

Respects writing mode, can be a column
or a row.

Has properties to align items on the
main axis and the cross axis.

static styles = css``

.main-panel {

 …

 display: flex;

 flex-direction: column;

 justify-content: space-evenly;

}

Display: flex vs grid

Flex

- One dimension
- Easy to understand
- Simple layouts
- Allows items to grow or

shrink if needed or wrap
on a new line

- Content shapes layout

Grid

- Two dimensions
- More complex syntax

(learning curve)
- Flexible for complex

layouts and layouts that
change depending on the
screen size

Text

font-family

font-size

font-weight

text-align

text-transform

static styles = css``

:host {

 …

 font-family: 'system-ui' !important;

 font-size: 16px !important;

}

static styles = css``

.main-panel {

 …

 padding: 0.75rem;

 border-radius: 0.75rem;

 text-transform: uppercase;

}

Cascade

1. Position and order of appearance: the order of which
your CSS rules appear

2. Specificity: an algorithm which determines which CSS
selector has the strongest match

3. Origin: the order of when CSS appears and where it
comes from, whether that is a browser style, CSS from
a browser extension, or your authored CSS

4. Importance: some CSS rules are weighted more heavily
than others, especially with the !important rule type

Cascade: Origin Type

Origin Type

User-Agent

browsers, have
basic stylesheets
that give default
styles to any

document

Author

styles written by
web developers.
These styles can
reset user-agent

styles

User

the user of the
website can choose
to override styles
using a custom
user stylesheet

Cascade: order

.class {

 background-color: red;

}

.class {

 background-color: blue;

}

Cascade: Specificity

A: id-like specificity

B: class-like specificity

C: element-like specificity

(1, 0, 0) vs (0, 4, 3)

* has (0, 0, 0)

Inheritance

body {

 color: red;

}

Color, font-family, text-align

Colour: rgb

color: rgb(34, 12, 64); 0 … 255

color: #090; 0 … f

color: #009900; 00 … ff

Colour: HSL

HSL: hue [angle], saturation (0-100%), and lightness (0-100%)

hsl(120deg 75% 25%)

High definition colours

oklab(40.1% 0.1143 0.045)

lightness,

a-axis (from green to red, -0.4
to 0.4 or %)

b-axis(from blue to yellow, -0.4
to 0.4 or %)

50% more colours

static styles = css``

.main-panel {

 …

 background: linear-gradient(145deg, #2a2a2a,
#1a1a1a);

 box-shadow: 0 0.75rem 3rem rgb(0,0,0,0.3);

}

static styles = css``

.control-section {

 width: 100%;

 display: flex;

 justify-content: space-evenly;

}

static styles = css``

.title-section {

 margin: 0;

 color: #fff;

 font-size: 1.5rem;

 text-align: center;

}

static styles = css``

.control-label {

 color: #ccc;

 text-align: center;

 font-size: 0.75rem;

}

static styles = css``

.footer {

 text-align: center;

 margin-top: 2.8rem;

}

Themes

color: light-dark(#000, #fff);

static styles = css``

:host {

 color-scheme: light dark;

}

static styles = css``

.main-panel {

 --gradient: linear-gradient(

 145deg,

 light-dark(#dfecee, #2a2a2a),

 light-dark(#84cce9, #1a1a1a)

);

}

static styles = css``

.main-panel {

 background: var(--gradient);

}

static styles = css``

.title-section {

 color: light-dark(#000, #fff);

}

static styles = css``

.control-label {

 color: light-dark(#4b4747,#cccccc);

}

Cmajor

Cmajor

Cmajor is a C-styled language that is designed for DSP signal processing code.

Aims:

● To match/beat the performance of C/C++
● Be simple to learn
● Make code portable across processor architectures (CPUs, GPUs, DSPs, etc)

Uses an LLVM JIT compiler, to optimise and hot reload code

More info: https://cmajor.dev/

Keywords / Ideas

Cmajor Patch

● A bundle/ folder containing metadata files, program files and other
resources GUI scripts, audio files, etc)

Keywords / Ideas

Processors and Graphs

● The main high-level structures in Cmajor.
● A Graph declares a set of nodes, and a list of connections between

them
○ These nodes can be processor objects or other graphs

● A Processor contains functions to perform mathematical
operations.

○ Processors declare a main() function, containing a loop which reads its inputs,
performs some processing, writes to outputs and repeats.

Example Graph

graph TwoGainsInSeries [[main]]
{
 // This section declares the inputs and outputs of the graph:
 input stream float in;
 output stream float out;

 // This section declares the nodes:
 node gain1 = GainProcessor; // declare two nodes, each one a GainProcessor
 node gain2 = GainProcessor;

 // And here we list the connections between the nodes:

 connection in -> gain1 -> gain2 -> out;

 // send our input through both gains, and the result to our output

}

Example Processor

processor GainProcessor

{

 input stream float in; // declare an input and output stream of floats

 output stream float out;

 void main()

 {

 loop // infinite loop

 {

 out <- in * 0.5f; // read our next input value, multiply by 0.5, and send it to
our output

 advance(); // advance to the next frame

 }

 }

}

.cmajorpatch File

Cmajor patches are a format for bundling together code and other
resources, so that they can be loaded into audio hosts such as DAWs, to
provide instruments or effect plugin functionality.

.cmajorpatch File

.cmajorpatch File

There are a few required properties that a patch must define:

CmajorVersion - this is the version of Cmajor for which this patch was written

ID - a universally unique ID for the patch, which should be in the form of a
reverse-URL that includes the company name/website.

version - a version number for your patch. This is just a string - there are no
restrictions on its format.

name - a human-readable name for your patch

.cmajorpatch File

Other optional properties include:

description - a longer description that a host can display to its users

manufacturer - the name of you or your company

category - hosts will be given this string, but how they choose to interpret it
will be host-dependent

isInstrument - if specified, this marks the patch as being an instrument rather
an effect. Some hosts may treat a plugin differently depending on this flag.

.cmajorpatch File

The source property in the manifest tells the host which .cmajor files to
compile for the Cmajor source code. This property can either be a
single string containing a file path (relative to the folder containing the
patch), or an array of string filenames if there are multiple files.

.cmajorpatch File

Specifying a custom GUI for a patch

To add a custom GUI to your patch, your .cmajorpatch file must declare
a view property, e.g.

The view property should contain a src property providing a relative
URL to a javascript module. Cmajor expects a web component here.

Cmajor

More information: https://cmajor.dev/

Installing Cmajor

https://github.com/cmajor-lang/cmajor/releases

Installing Cmajor

https://github.com/cmajor-lang/cmajor/releases

Useful for:

● Command Line Tools
● VST3 Patch Host
● Test Suite

https://github.com/cmajor-lang/cmajor/releases

Installing Cmajor

https://github.com/cmajor-lang
/cmajor/releases

Useful for:

● Command Line Tools
● VST3 Patch Host
● Test Suite

https://github.com/cmajor-lang/cmajor/releases
https://github.com/cmajor-lang/cmajor/releases

Installing Cmajor

https://github.com/cmajor-lang/cmajor/releases

Useful for:

● Command Line Tools
● VST3 Patch Host
● Test Suite

https://github.com/cmajor-lang/cmajor/releases

Installing Cmajor

https://github.com/cmajor-lang
/cmajor/releases

Useful for:

● Command Line Tools
● VST3 Patch Host
● Test Suite

https://github.com/cmajor-lang/cmajor/releases
https://github.com/cmajor-lang/cmajor/releases

Installing Cmajor

https://github.com/cmajor-lang/
cmajor/releases

Useful for:

● Command Line Tools
● VST3 Patch Host
● Test Suite

https://github.com/cmajor-lang/cmajor/releases
https://github.com/cmajor-lang/cmajor/releases

VSCode Cmajor Extension

VSCode Cmajor Extension

● Open VSCode
● Open Extensions
● Search Cmajor

Cmajor Commands

Open the command palette with:

CTRL/ CMD + Shift + P

Cmajor Commands

To VSCode…

Letʼs look at a Cmajor patch

Karplus-Strong string synthesis

https://docs.google.com/file/d/1d3eUvI4kNgGsvaTpB8kpr7qvxsTIQrH9/preview

Connecting the UI

Connecting parameters to the UI

The UI representation of parameter controls will always need to get
connected to the parameters defined in the audio processors.

input event float impulseLength [[name: "length", min: 0.1f, max: 5.0f, init: 1.0f]];

(main.cmajor)

KnobComponent (KnobComponent.js)

Two-way communication

UIINTERACTIVITY

REALTIME PROCESSING

MAIN / GUI THREAD

AUDIO THREAD
HIGH PRIORITY

AUDIO
GRAPH

Two-way communication

Reading / changing parameter values needs to be synchronised
across threads to ensure data consistency:

→ reading a value, modifying it, and writing it back may involve multiple
steps that can be interrupted by other threads

→ if a value is being read while itʼs being changed, we may end up with
inconsistent data

Luckily, here the framework is taking care of it for us.

Two-way communication

In CMajor, the web UI can communicate with the running patch through
the PatchConnection object.

The object is provided by the CMajor runtime (the command line patch player,
a Cmajor plugin loader, or - in our case - VScode extension) as an argument to a
function called to create a view for our patch.

The function needs to be the default export of the javascript module
pointed to in the manifest file (main.cmajorpatch).

https://cmajor.dev/docs/PatchFormat#the-patchconnection-object

PatchConnection

/* This is the function that a host (the command line patch player, or a Cmajor plugin

 loader, or our VScode extension, etc) will call in order to create a view for your patch.

 Ultimately, a DOM element must be returned to the caller for it to append to its document.

 However, this function can be `async` if you need to perform asynchronous tasks, such as

 fetching remote resources for use in the view, before completing.

*/

export default function createPatchView (patchConnection)

{

 return new my_View (patchConnection);

}

PatchConnection
object passed by host

Return an HTMLElement

PatchConnection

PatchConnection provides a range of methods for controlling and querying the

state of the patch.

- Updating parameter values:
- sendEventOrValue (endpointID, value, rampFrames) - update value; optional ramp

parameter specifies number of frames over which the current value ramps to the new one

- sendParameterGestureStart (endpointID) - tells the patch that a series of changes
(gesture) is about to take place for the given endpoint

- sendParameterGestureEnd (endpointID) - tells the patch the gesture has finished

Wrapping parameter changes in a gesture ensures the host recognizes them as a single used action,

which is important for features like recording automation or undo/redo.

https://cmajor.dev/docs/PatchFormat#the-patchconnection-object

PatchConnection

- Listening to parameter changes:
- addParameterListener (endpointID, listener) - attaches a listener function which

will receive updates with a new value whenever a given parameterʼs value changes.

- removeParameterListener (endpointID, listener) - removes a listener

- requestParameterValue (endpointID) - triggers an asynchronous callback to any
parameter listeners that are attached, providing them with an up-to-date current value for
the given endpoint

Receive the current parameter value:

patchConnection.addParameterListener (endpointID, callback);

patchConnection.requestParameterValue (endpointID);

PatchConnection

- Listening to changes of events or audio data:
- addEndpointListener (endpointID, listener, granularity) - attaches a listener

function which will receive updates with the events or audio data that is being sent or
received by an endpoint. If the endpoint has the right shape to be treated as “audioˮ then the
callback will receive a stream of updates of chunks of data that is flowing through it. There
will be one callback per chunk of data, and the size of chunks is specified by the optional
granularity parameter.

- removeEndpointListener (endpointID, listener) - removes a listener

PatchConnection

- Getting remaining parameter information
In order to correctly display the parameter range in the UI, we need to query the
parameterʼs min and max values from the patch. Such information is stored as
endpoint description and is part of patchʼs status. The status information can be
obtained through the following API

- addStatusListener (listener) - attaches a listener function which will be called when
the patchʼs status changes. The current status information will be passed as a parameter.

- removeStatusListener (listener) - removes a listener that was previously added

Patch status

The patch status contains many

properties describing the current

state, including:

- patch manifest

 "manifest": {

 "CmajorVersion": 1,

 "ID": "dev.dynamic-cast.workshops.adc25",

 "version": "1.0",

 "name": "Karplus-Strong Synthesizer",

 "description": "A polyphonic Karplus-Strong string synthesis implementation",

 "category": "generator",

 "manufacturer": "Dynamic Cast",

 "isInstrument": true,

 "source": "main.cmajor",

 "view": {

 "src": "ui/dist/index.js",

 "width": 580,

 "height": 580,

 "resizable": false

 }

},

Patch status

- endpoint descriptions
(truncated output)

 "details": {

 "mainProcessor": "Main",

 "mainProcessorLocation": "/path/to/proj/main.cmajor:1:7: ",

 "inputs": [

 {

 "endpointID": "filter",

 "endpointType": "event",

 "dataType": {

 "type": "float32"

 },

 "annotation": {

 "name": "filter",

 "min": 100,

 "max": 10000,

 "init": 500

 },

 "purpose": "parameter",

 "source": "/path/to/proj/main.cmajor:8:17:"

 },

Patch status

- endpoint descriptions
(truncated output)

 "outputs": [

 {

 "endpointID": "amplitude",

 "endpointType": "event",

 "dataType": {

 "type": "float32"

 },

 "annotation": {

 "name": "amplitude",

 "min": 0,

 "max": 1

 },

 "source": "/path/to/proj/main.cmajor:5:18:"

 }

Patch status

- other metadata "warning": "",

 "sampleRate": 44100,

 "host": "Cmajor Player"

Connecting patch data to the UI

Letʼs use the PatchConnection API to connect
our patch data to the UI

Back to the code

Connecting patch data to the UI

patchConnection.requestStatusUpdate();

patchConnection.addStatusListener ((currentStatus) => {

});

In createPatchView of index.js

Connecting patch data to the UI

 const createParameterBinding = (targetEndpointID) => {

 const endpointDetails = currentStatus?.details?.inputs?.find(

({ endpointID }) => endpointID === targetEndpointID);

 if (!endpointDetails) return null;

 };

body of patchConnection.addStatusListener:

Connecting patch data to the UI

 const { endpointID } = endpointDetails;

 return {

 minValue: endpointDetails?.annotation?.min,

 maxValue: endpointDetails?.annotation?.max,

 defaultValue: endpointDetails?.annotation?.init,

 startGesture: () => patchConnection.sendParameterGestureStart (endpointID),

 updateValue: (newValue) => patchConnection.sendEventOrValue (endpointID, newValue),

 endGesture: () => patchConnection.sendParameterGestureEnd (endpointID),

 };

body of createParameterBinding, continued:

Connecting patch data to the UI

endGesture: () => patchConnection.sendParameterGestureEnd (endpointID),

attachListener: (callback) =>

{

 patchConnection.addParameterListener (endpointID, callback);

 patchConnection.requestParameterValue (endpointID);

 return () => patchConnection.removeParameterListener (endpointID, callback);

}

body of createParameterBinding, continued:

Connecting patch data to the UI

 const createAmplitudeBinding = (targetEndpointID) => {

 const endpointDetails = currentStatus?.details?.outputs?.find(

({ endpointID }) => endpointID === targetEndpointID);

 if (!endpointDetails) return null;

 return {

 attachListener: (callback) => {

 patchConnection.addEndpointListener(endpointDetails.endpointID, callback);

 return () => patchConnection.removeEndpointListener(

endpointDetails.endpointID, callback);

 }

 };

 };

body of patchConnection.addStatusListener, continued:

Connecting patch data to the UI

 const karplusUI = createKarplusView({

 impulseLength: createParameterBinding("impulseLength"),

 filterFreq: createParameterBinding("filter"),

 feedbackAmount: createParameterBinding("feedback"),

 amplitude: createAmplitudeBinding("amplitude"),

 });

 mainContainer.appendChild(karplusUI);

Move createKarplusView to patchConnection.addStatusListener

Running the patch in a DAW

https://github.com/cmajor-lang/cmajor/releases/tag/1.0.3029

https://github.com/cmajor-lang/cmajor/releases/tag/1.0.3029

Recap

- Use WebViews to make good-looking UIs!
- HTML is easy to understand, MDN for reference
- Box model
- Outer display: inline, block
- Inner display: flex, grid
- Colours: rgb, hsl and modern colour spaces

Resources

● MDN web docs
● web.dev/learn
● codepen.io
● smashing magazine
● CSS tricks
● Evil martians on modern colours
● can I use

https://developer.mozilla.org/
https://web.dev/learn
https://codepen.io/
https://www.smashingmagazine.com/
https://css-tricks.com/
https://evilmartians.com/chronicles/oklch-in-css-why-quit-rgb-hsl
https://caniuse.com/

Thank you

