

First things first

Who am I ?

- Maxime Coutant, software engineer

- 6 years of experience in the audio industry:
- 3 years in a startup (Audionamix)
- 2.5 years in a research lab (ADASP - Télécom Paris)
- around a year on hobby and open source projects

3

This talk

- About creating working prototypes and binaries from research results

- Not about prototyping during the research process itself

- Not a ready to distribute framework for plugin development

4

The Audible Project

The Audible project

- Public R&D french project

- Gathered four entities
- Greenwaves Technologies: RISC-V custom DSP processor
- Orosound: Headset integrating the DSP processor
- Télécom Paris: providing software to run on the DSP processor and other devices
- Another research lab about EEG

- The goal was to provide a base common platform for these entities to license
and improve on

6

The Audible project - ADASP role

- Our role was to provide a new generation of algorithms, ML based, adapted to
the target platforms: embedded DSP processor, mobile and cloud

- The team was composed of
- 4 PHDs
- 2 Post-docs
- 6 Engineers
- 1 Lead researcher

7

The Audible project - my role

- Integrate the neural networks provided by the team into compiled libraries:
- custom DSP processor
- generic mobile processor
- raspberry pi 0 and 4 for prototyping
- linux cloud cpu

- Developed a C++ framework to implement such libraries

8

The Audible project - current state

- The project is mostly finished

- Not everything went as planned

- Some code will slowly deprecate on Télécom Paris’s servers

9

The framework

Goals & Features

The general concept

- Must allow to reproduce accurately research results

- Must allow for iterative design process
- Research can evolve quickly

- Must supports multiple use cases
- Rendering vs Classification
- Possible need for distributed computation

- Cross compiling: linux, android, iOS

11

Reproducing research results

- Supports fp32 and fp64 precision

- Supports for custom processing

- Reproducible filter banks (ERB, MFC, custom)
- Loads from Numpy
- Configurable epsilon for log

12

Technical features

- Real-time compatible interface

- Async processing
- Local processing
- Remote processing (client/server)

- Multiple backends
- FFT
- Inference engine

- Basic encryption for NN weights

13

A note about research

- Research evolves => Features evolves

- Some research failures can heavily impacts the vision of the project

14

The framework

Software design

Let’s get started

- Chain of nodes connected by “wires”

- Generic data view
- Up to 3 dimensions: frames, channels, frame size
- Scalar, complex
- Serves as the I/O types for the nodes, can be concatenated as tuples

- Base Node class, highly configurable

16

Let’s get started

- Wide variety of features, each configuration known at compile-time
- C++ templates and constexpr

- Templated DSP chain, composed of nodes

- Templated base Node class

17

Sync & Async
Processing

Synchronous real-time processing: the Processor class

Real-time processing interface:

19

Asynchronous processing: new nodes

- TransmissionNode
- Has no output, send data on a Connection
- Can only be found at the end of a chain

- ReceptionNode
- Has no input, gets its data from a Connection
- Can only be found at the start of a chain

- Connection: abstraction over a connection between two DSP chains
- Can be local: e.g. FIFO
- Can be over the network: e.g. websockets

20

Asynchronous processing: the AsyncProcessor class

- Supports all three modes using template parameters and requires clauses
- Local async mode
- Client mode
- Server mode

21

Asynchronous processing: Local async mode

- User provides:
- An async chain with input and output (no transmission/reception nodes)
- Optional: A prechain with input and output (no transmission/reception nodes)

- AsyncProcessor will introduce:
- TransmissionNode<LockFreeFIFO> at the end of the prechain and the async chain
- ReceptionNode<LockFreeFIFO> at the beginning of the async chain

- Real-time interface:

22

Asynchronous processing: Local async mode

Real-time thread

Async thread created by AsyncProcessor

 TransmissionPreprocessing DSP Chain

Lock-Free Connection

 Reception TransmissionAsync DSP Chain

Lock-Free Connection

23

Asynchronous processing: Server mode

- User provides:
- An async chain with a reception node and a transmission node
- A specific input connection to use
- A specific output connection to use

- No real-time interface. It will start on init and stop on cleanup.

24

Asynchronous processing: Server mode

Async thread created by AsyncProcessor

Input Connection

Async DSP Chain

Output Connection

25

Asynchronous processing: Client mode

- User provides:
- An async chain with a reception node
- A prechain with a transmission node
- A specific input connection to use
- A specific output connection to use

- AsyncProcessor will introduce:
- TransmissionNode<LockFreeFIFO> at the end of the async chain

- Real-time interface: same as async local mode

26

Asynchronous processing: Client mode

Real-time thread

Async thread created by AsyncProcessor

Preprocessing DSP Chain

Connection

 Reception TransmissionAsync DSP Chain

Lock-Free Connection
Connection

27

Backends

Backend selection

- One library per task: provide the base code

- One library per backend: provide the node classes

- User only links the backend library

29

List of backends

- Inference

- STFT

Executorch

30

Inference

Inference support: tensors

- Standardized tensors
- data_in_<n> / data_out_<m> tensors: I/O of the node
- parameter_<p> tensors: controlled by the user
- state_in_<s> / state_out_<s> tensors (ONNXRuntime only)

- Tensors up to 4D, need to be bind to an data view type, will be statically enforced

32

Inference support: model loading

- Each engine has its format

- Can be loaded from:
- filepath
- in-memory file
- in-memory encrypted file with AES-CBC 256 bits

33

Nodes features

Nodes features:

- Nodes might ask for external memory to store its output
- External memory is shared between nodes
- Different function prototypes

- Gated nodes:
- A Gated node does not always produce an output for an input
- No gated nodes are allowed in a Processor chain, only in AsyncProcessor

35

Some more details

Numpy loading

- Using compile-time python script to load it into a std::array

37

About real-time safety

- Some backends are not real-time safe:
- onnxruntime
- tensorflow lite
- fftw

- Some backends are:
- executorch
- signalsmith dsp

- Tests are sanitized using rtsan, but the unsafe backend are deliberately
ignored

38

About Security

- AES-CBC 256 bits is provided by mbedtls

- async_websockets is not yet configured for security

39

Licensing

- rt-machine-cpp is under the MIT license

- The FFTW backend is specifically under GPL3 license

40

iOS support

- The framework was built and tested for iOS 16.1

- Some inference backends are not supported
- TensorFlow Lite
- Executorch

41

Some interesting failures

- Integrating the DSP chip inference engine into the framework was impossible
- Chip did not support C++

- Various intermediate design
- Sync/Async was correlated with the data types: bad idea !

42

CRTP vs virtual methods

- Nodes use virtual methods
- Better error messages
- Only the size of vtables of overhead

- Backends use CRTP
- No overhead
- Nodes originally used CRTP

43

Thank you !

https://github.com/tpt-adasp/rt-machine-cpp

https://github.com/tpt-adasp/rt-machine-cpp

