2.5 YEARS LATER

A (++ FRAMEWORK FOR
AUDIO ML RESEARCH PROTOTYPING

MAXIME COUTANT

First things first

Who am | ?

- Maxime Coutant, software engineer

- 6 years of experience in the audio industry:
- 3yearsin a startup (Audionamix)
- 2.5 yearsin aresearch lab (ADASP - Télécom Paris)
- around a year on hobby and open source projects

This talk

- About creating working prototypes and binaries from research results
- Not about prototyping during the research process itself

- Not a ready to distribute framework for plugin development

The Audible Project

The Audible project
- Public R&D french project

- Gathered four entities
- Greenwaves Technologies: RISC-V custom DSP processor
- Orosound: Headset integrating the DSP processor
- Télécom Paris: providing software to run on the DSP processor and other devices
- Another research lab about EEG

- The goal was to provide a base common platform for these entities to license
and improve on

The Audible project - ADASP role

- Our role was to provide a new generation of algorithms, ML based, adapted to
the target platforms: embedded DSP processor, mobile and cloud

- The team was composed of
4 PHDs
2 Post-docs
6 Engineers
1 Lead researcher

The Audible project - my role

- Integrate the neural networks provided by the team into compiled libraries:
custom DSP processor
generic mobile processor
raspberry pi O and 4 for prototyping
linux cloud cpu

- Developed a C++ framework to implement such libraries

The Audible project - current state
- The project is mostly finished
- Not everything went as planned

- Some code will slowly deprecate on Télécom Paris’s servers

The framework

Goals & Features

The general concept
- Must allow to reproduce accurately research results

- Must allow for iterative design process
- Research can evolve quickly

- Must supports multiple use cases
- Rendering vs Classification
- Possible need for distributed computation

- Cross compiling: linux, android, iOS

1

Reproducing research results
- Supports fp32 and fp64 precision
- Supports for custom processing

- Reproducible filter banks (ERB, MFC, custom)

Loads from Numpy
Configurable epsilon for log

12

Technical features
- Real-time compatible interface

- Async processing
Local processing
Remote processing (client/server)

- Multiple backends
FFT
Inference engine

- Basic encryption for NN weights

13

A note about research
- Research evolves => Features evolves

- Some research failures can heavily impacts the vision of the project

14

The framework

Software design

Let’s get started

- Chain of nodes connected by “wires”

O—0—0
- Generic data view

- Up to 3 dimensions: frames, channels, frame size
- Scalar, complex
- Serves as the I/O types for the nodes, can be concatenated as tuples

- Base Node class, highly configurable

16

Let’s get started

- Wide variety of features, each configuration known at compile-time
- C++templates and constexpr

- Templated DSP chain, composed of nodes

template <typename... Nodes>
class Chain;

using MyDSPChain = Chain<FirstNode, SecondNode>;

- Templated base Node class

template <typename Derived, typename InputView, typename OutputView, bool NeedExternalWire>

class ProcessorNode;

Sync & Async
Processing

Synchronous real-time processing: the Processor class

template <typename NodeChain>
class Processor;

using MyProcessor = Processor<Chain<FirstNode, SecondNode>>;

Real-time processing interface:

bool pause(bool pause) noexcept REALTIME;

void process(InputType input, OutputType output) noexcept REALTIME;

19

Asynchronous processing: new nodes

- TransmissionNode

- Has no output, send data on a Connection
- Can only be found at the end of a chain

- ReceptionNode

- Has no input, gets its data from a Connection
- Can only be found at the start of a chain

- Connection:; abstraction over a connection between two DSP chains

- Can belocal: e.g. FIFO
- Can be over the network: e.g. websockets

20

Asynchronous processing: the AsyncProcessor class

- Supports all three modes using template parameters and requires clauses
- Local async mode
- Client mode
- Server mode

template <typename UserAsyncNodeChain,
typename UserPreprocessingChain = nodes::EmptyChain>

class AsyncProcessor;

21

Asynchronous processing: Local async mode

- User provides:

- An async chain with input and output (no transmission/reception nodes)
- Optional: A prechain with input and output (no transmission/reception nodes)

- AsyncProcessor will introduce:

- TransmissionNode<LockFreeFIFO> at the end of the prechain and the async chain
- ReceptionNode<LockFreeFIFO> at the beginning of the async chain

- Real-time interface:

void consumeAudio(InputType input) noexcept REALTIME;

bool retrieveResults(OQutputType dest, int timeout_ns) noexcept REALTIME;

22

Asynchronous processing: Local async mode

-

consumeAudio(input);

Real-time thread

~

B ommm w mmm n mmm R mmm R mEm R mEm R s R mmm N s R W N MEm R M N MEm R M N MM R M N MEm R M W MEm 8 MmN MmN s R M N MmN M N s R M N MmN M N MEm R M R MmN M R M N M R M d mmm n mm mm

Asynchronous processing: Server mode

- User provides:

- An async chain with a reception node and a transmission node
- A specific input connection to use
- A specific output connection to use

- No real-time interface. It will start on init and stop on cleanup.

24

Asynchronous processing: Server mode

[Input Connection } [Output Connection }

B ommm s s s mEm R EEm s EEs R EEm A s R M A EEm R M A EEm A M A M A Em A M A EEm A M A M R M A s R — - o = o e o e

[Async DSP Chain }

Async thread created by AsyncProcessor

Asynchronous processing: Client mode

- User provides:

- An async chain with a reception node
- A prechain with a transmission node
- A specific input connection to use

- A specific output connection to use

- AsyncProcessor will introduce:
- TransmissionNode<LockFreeFIFO> at the end of the async chain

- Real-time interface: same as async local mode

void consumeAudio(InputType input) noexcept REALTIME;

bool retrieveResults(OutputType dest, int timeout_ns) noexcept REALTIME;

26

Asynchronous processing: Client mode

Real-time thread

A\

N
consumeAudio(input); :>£ Preprocessing DSP Chain \ retrieveResults(dest);

Connection </
Connection
{ Async DSP Chain

B ommm o s w mmm h s m mE 8 s R EEm W MmN s R M N s R M N MmN M N MEm R M N MEm R M N Mmm R Mmm R MmN M R M N M R mmm § mmm n o mm

Backends

Backend selection

- One library per task: provide the base code

stft

inference
async

- One library per backend: provide the node classes

stft_signalsmith
stft_fftw

- User only links the backend library

29

List of backends

- Inference

ONNX
RUNTIME

- STFT

FFTW

T

TensorFlow Lite

Signalsmith-Audio/
dsp

GitHub mirror of Signalsmith Audio's C++ DSP
support library

sssssssssss

A1 ©o w237 ¥ 22
Contributor Forks

Executorch

30

Inference

Inference support: tensors

Standardized tensors

data_in <n>/data_out_ <m>tensors: /O of the node
parameter_<p> tensors: controlled by the user
state_in_<s> / state_out_<s> tensors (ONNXRuntime only)

Tensors up to 4D, need to be bind to an data view type, will be statically enforced

using ShapeType = Shape<

Dimension<DimensionType: :kChannels, 2>,
Dimension<DimensionType: :kBlock, 512>>;

32

Inference support: model loading
- Each engine has its format

- Can be loaded from:
filepath
in-memory file
in-memory encrypted file with AES-CBC 256 bits

33

Nodes features

Nodes features:

- Nodes might ask for external memory to store its output

- External memory is shared between nodes
- Different function prototypes

voild process(InputViewType input, OutputViewType output) noexcept REALTIME;

OutputViewType process(InputViewType input) noexcept REALTIME;

- Gated nodes:

- A Gated node does not always produce an output for an input
- No gated nodes are allowed in a Processor chain, only in AsyncProcessor

35

Some more details

Numpy loading

- Using compile-time python script to load it into a std::array

37

About real-time safety

Some backends are not real-time safe:

onnxruntime
tensorflow lite
fftw

Some backends are:

executorch
signalsmith dsp

Tests are sanitized using rtsan, but the unsafe backend are deliberately
ignored

38

About Security
- AES-CBC 256 bits is provided by mbedtls

- async_websockets is not yet configured for security

39

Licensing
- rt-machine-cpp is under the MIT license

- The FFTW backend is specifically under GPL3 license

40

iOS support
- The framework was built and tested for iOS 161

- Some inference backends are not supported

TensorFlow Lite
Executorch

41

Some interesting failures

- Integrating the DSP chip inference engine into the framework was impossible
Chip did not support C++

- Various intermediate design
Sync/Async was correlated with the data types: bad idea !

42

CRTP vs virtual methods

- Nodes use virtual methods

- Better error messages
- Only the size of vtables of overhead

- Backends use CRTP

- No overhead
- Nodes originally used CRTP

43

Thank you !

https://github.com/tpt-adasp/rt-machine-cpp

https://github.com/tpt-adasp/rt-machine-cpp

