

Debugging Applications

Enterprise Applications:
Enterprise applications are concerned with
crashes and security vulnerabilities due to
out of bounds memory accesses.
Security vulnerabilities have become big
business and a lot of new tooling focuses
on finding or exploiting vulnerabilities.
Defects in applications that are not
security problems are not treated as high
priority.

Signal Processing Applications:
Signal processing algorithms may require
complex addressing schemes that can be
100% memory safe and still be wrong.
Signal processing bugs will ruin the
experience and cannot be ignored.
We cannot tell whether data is valid by
looking at a single sample, we need to
evaluate the entire buffer.
Standard debugging tools have poor
support for that.
Lots of custom tooling in various code
bases.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 1 / 22

Debugging Applications

Enterprise Applications:
Enterprise applications are concerned with
crashes and security vulnerabilities due to
out of bounds memory accesses.
Security vulnerabilities have become big
business and a lot of new tooling focuses
on finding or exploiting vulnerabilities.
Defects in applications that are not
security problems are not treated as high
priority.

Signal Processing Applications:
Signal processing algorithms may require
complex addressing schemes that can be
100% memory safe and still be wrong.
Signal processing bugs will ruin the
experience and cannot be ignored.
We cannot tell whether data is valid by
looking at a single sample, we need to
evaluate the entire buffer.
Standard debugging tools have poor
support for that.
Lots of custom tooling in various code
bases.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 1 / 22

Turning Unstructured Data into Structured Data

Memory Contents in a C++ application are structured via the type system.
Debuggers are unaware of this structure except for local and global variables.
C++ applications use RAII to manage memory and other resources.
Typical examples are containers like std::vector and std::unordered_map and smart pointers
like std::shared_ptr and std::unique_ptr.
Production code bases have many examples of containers and smart pointers outside the standard
library.
Ultimately all resources are owned by local and global variables either directly or indirectly.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 2 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb)

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb)

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb)

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb) print &data

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb) print &data
$3 = 0x40020
(gdb)

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb) print &data
$3 = 0x40020
(gdb) x 0x40020

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb) print &data
$3 = 0x40020
(gdb) x 0x40020
0x40020 <data>: 0x500b0

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb) print &data
$3 = 0x40020
(gdb) x 0x40020
0x40020 <data>: 0x500b0
(gdb) x 0x500b0

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

Code
struct Data {
int val = 42;
std::vector<int> more =

{1, 2, 3};
};

std::unique_ptr<Data> data =
std::make_unique<Data>();

GDB commands
(gdb) print data
$1 = {get() = 0x500b0}
(gdb) print *data
$2 = {val=42, more={1, 2, 3}}
(gdb) print &data
$3 = 0x40020
(gdb) x 0x40020
0x40020 <data>: 0x500b0
(gdb) x 0x500b0
0x500b0: 0x0000002a

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 3 / 22

Examing Memory with GDB

GDB can work forwards from a container or smart pointer to the addresses of the contained
elements
it cannot work backwards from the address to “I know there is a struct Data at this address”
it only supports this if someone has manually created a pretty printer for that type

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 4 / 22

Examing Memory with GDB

GDB can work forwards from a container or smart pointer to the addresses of the contained
elements
it cannot work backwards from the address to “I know there is a struct Data at this address”
it only supports this if someone has manually created a pretty printer for that type
I want to support all containers and smart pointers and I don’t want to write pretty printers by hand

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 4 / 22

Examing Memory with GDB

GDB can work forwards from a container or smart pointer to the addresses of the contained
elements
it cannot work backwards from the address to “I know there is a struct Data at this address”
it only supports this if someone has manually created a pretty printer for that type
I want to support all containers and smart pointers and I don’t want to write pretty printers by hand
I want to traverse all containers, store the addresses of found objects and allow reverse lookup by
address

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 4 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

Question
How can a C++ compiler iterate over
elements in a container?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

(gdb) print container

Question
How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

}

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

(gdb) print container

Question
How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

}

Answer
By calling begin() and end() behind the
scenes.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

(gdb) print container

Question
How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

}

Answer
By calling begin() and end() behind the
scenes.
By calling operator*() and operator++() on
the obtained iterators.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

(gdb) print container

Answer
By executing begin() and end() behind the
scenes.

Question
How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

}

Answer
By calling begin() and end() behind the
scenes.
By calling operator*() and operator++() on
the obtained iterators.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Generically Iterate over any Container

Question
How can a C++ debugger iterate over
elements in a container?

(gdb) print container

Answer
By executing begin() and end() behind the
scenes.
By executing operator*() and operator++()
on the obtained iterators.

Question
How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

}

Answer
By calling begin() and end() behind the
scenes.
By calling operator*() and operator++() on
the obtained iterators.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 5 / 22

Object Enumeration Algorithm

1 find all containers, start with global and local variables
2 run an interpreter on the machine code of begin() and end() to get iterators
3 run an interpreter on the machine code of operator*() to get a valid pointer
4 run an interpreter on the machine code of operator++() to get more iterators

5 This relies on the public interface of a type and works for user-defined container types without
requiring additional configuration

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 6 / 22

Object Enumeration Algorithm

1 find all containers, start with global and local variables
2 run an interpreter on the machine code of begin() and end() to get iterators
3 run an interpreter on the machine code of operator*() to get a valid pointer
4 run an interpreter on the machine code of operator++() to get more iterators
5 This relies on the public interface of a type and works for user-defined container types without

requiring additional configuration

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 6 / 22

Interpreter for Machine Code

Here is the complete disassembly for the necessary functions in a libstdc++ container on x86-64:

std::string::begin()
endbr64
movq (%rdi), %rax
retq

std::string::end()
endbr64
movq (%rdi), %rax
addq 8(%rdi), %rax
retq

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 7 / 22

Object Enumeration beyond Containers

1 Smart pointers work just the same: use operator bool() and operator*().
2 Smart pointers might be declared with an interface type, not the concrete type.

The concrete type can be recovered if the declared type has virtual methods.
3 optional and expected work just the same: has_value() and value().
4 std::function does not have a public interface to get the contained value.
5 std::variant will be discussed later.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 8 / 22

Object Enumeration: Theory vs Practice

Let us assume the method works flawlessly:
We will discover millions of objects,
thousands of types
It is not enough to make the debugger
aware of objects, we need to find ways to
make use of this information without
causing information overload.
I want to allow debugging in terms of the
application’s object model, not raw bits
and bytes

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 9 / 22

Object Enumeration: Theory vs Practice

Let us assume the method works flawlessly:
We will discover millions of objects,
thousands of types
It is not enough to make the debugger
aware of objects, we need to find ways to
make use of this information without
causing information overload.
I want to allow debugging in terms of the
application’s object model, not raw bits
and bytes

Can we assume the method works flawlessly?
Release builds often show optimized
away for local variables.
Release builds inline simple functions and
remove unused functions.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 9 / 22

Object Enumeration: Release Builds

Can we assume the method works flawlessly?
Release builds often show optimized
away for local variables.
Release builds inline simple functions and
remove unused functions.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 10 / 22

Object Enumeration: Release Builds

Can we assume the method works flawlessly?
Release builds often show optimized
away for local variables.
Release builds inline simple functions and
remove unused functions.

A variable will show as optimized away if the
debugger cannot get its memory location.

Variables with a non-trivial destructor
typically reside in memory and not in
registers. A pointer, index or iterator will
be optimized more aggressively than a
container or smart pointer.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 10 / 22

Object Enumeration: Release Builds

Can we assume the method works flawlessly?
Release builds often show optimized
away for local variables.
Release builds inline simple functions and
remove unused functions.

A variable will show as optimized away if the
debugger cannot get its memory location.

Variables with a non-trivial destructor
typically reside in memory and not in
registers. A pointer, index or iterator will
be optimized more aggressively than a
container or smart pointer.
Missing functions are quite different from
missing variables. Functions don’t have
state.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 10 / 22

Object Enumeration: Release Builds

Can we assume the method works flawlessly?
Release builds often show optimized
away for local variables.
Release builds inline simple functions and
remove unused functions.

A variable will show as optimized away if the
debugger cannot get its memory location.

Variables with a non-trivial destructor
typically reside in memory and not in
registers. A pointer, index or iterator will
be optimized more aggressively than a
container or smart pointer.
Missing functions are quite different from
missing variables. Functions don’t have
state.
Functions can be recovered from an
unoptimized build and used on the
optimized build (we run them in an
interpreter anyway).

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 10 / 22

Object Enumeration: Build Recommendations

All builds, even Release builds, should be built with debugging information. You can strip the
debugging information before shipping code to customers.
Debug information should be as detailed as possible (use the compiler option -g3, not just -g).
You can use compressed debug information if the size of debug information is a concern.
There should be an unoptimized build that is identical to the release build except for optimization
flags. Sometimes Debug builds contain additional code or even additional members in structs
compared to Release builds.
Use the most recent compiler available.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 11 / 22

Visualizing Memory Contents

Uncompressed images are easiest. We know how to show a simplified image: by downscaling
There is still a lot of freedom in encoding the pixels in images
Uncompressed audio is a lot more straightforward.
Samples will be encoded as signed integers or floating point numbers.
Unlike images, there is a direct correspondence between C++ built-in types and sample encodings
24bit integers have been added to C23 but not yet to C++ (clang supports them in C++ as an
extension)
metadata consists of the sample rate and number of channels

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 12 / 22

Extracting Samples and Metadata

Application 1
Hard-coded sample rate,
hard-coded numer of channels,
interleaved stereo

Application 2
using
juice::AudioBuffer<T>,
templated by sample type and
non-interleaved channels

Application 3
an application that uses one
type that can hold different
sample types at runtime,
specified via an enum

There is no uniform interface, there is no std::audio concept in C++.
This will require some kind of configuration for the debugger:

XML like NatVis used in Microsoft products
Python code as used by GDB and LLDB
configuration via functions in the binary used by the debugger

get_sample_rate()
get_number_of_channels()
get_number_of_samples()
either get_interleaved_samples() or get_samples_for_channel() or both

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 13 / 22

Extracting Samples and Metadata

Application 1
Hard-coded sample rate,
hard-coded numer of channels,
interleaved stereo

Application 2
using
juice::AudioBuffer<T>,
templated by sample type and
non-interleaved channels

Application 3
an application that uses one
type that can hold different
sample types at runtime,
specified via an enum

There is no uniform interface, there is no std::audio concept in C++.

This will require some kind of configuration for the debugger:
XML like NatVis used in Microsoft products
Python code as used by GDB and LLDB
configuration via functions in the binary used by the debugger

get_sample_rate()
get_number_of_channels()
get_number_of_samples()
either get_interleaved_samples() or get_samples_for_channel() or both

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 13 / 22

Extracting Samples and Metadata

Application 1
Hard-coded sample rate,
hard-coded numer of channels,
interleaved stereo

Application 2
using
juice::AudioBuffer<T>,
templated by sample type and
non-interleaved channels

Application 3
an application that uses one
type that can hold different
sample types at runtime,
specified via an enum

There is no uniform interface, there is no std::audio concept in C++.
This will require some kind of configuration for the debugger:

XML like NatVis used in Microsoft products
Python code as used by GDB and LLDB
configuration via functions in the binary used by the debugger

get_sample_rate()
get_number_of_channels()
get_number_of_samples()
either get_interleaved_samples() or get_samples_for_channel() or both

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 13 / 22

Extracting Samples and Metadata

Application 1
Hard-coded sample rate,
hard-coded numer of channels,
interleaved stereo

Application 2
using
juice::AudioBuffer<T>,
templated by sample type and
non-interleaved channels

Application 3
an application that uses one
type that can hold different
sample types at runtime,
specified via an enum

There is no uniform interface, there is no std::audio concept in C++.
This will require some kind of configuration for the debugger:

XML like NatVis used in Microsoft products
Python code as used by GDB and LLDB
configuration via functions in the binary used by the debugger

get_sample_rate()
get_number_of_channels()
get_number_of_samples()
either get_interleaved_samples() or get_samples_for_channel() or both

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 13 / 22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?
std::variant

each object may hold a different type at
runtime
the get() free function can be used to
get a reference to the contents

V = std::variant<int,float> can be
queried with

int& std::get<int>(V&) and
float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

A C++ object for holding samples and
metadata

We use templated free functions to get a
pointer to samples.

If it is not the right type the function can
throw, abort() or return nullptr.
We can infer the type from the return
type of the succeeding function.
There may be multiple channels. The
samples of different channels may or may
not be interleaved.
We use one free function to query for
interleaved samples and a different one
for non-interleaved samples

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 14 / 22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?
std::variant

each object may hold a different type at
runtime
the get() free function can be used to
get a reference to the contents

V = std::variant<int,float> can be
queried with

int& std::get<int>(V&) and
float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

A C++ object for holding samples and
metadata

We use templated free functions to get a
pointer to samples.
If it is not the right type the function can
throw, abort() or return nullptr.

We can infer the type from the return
type of the succeeding function.
There may be multiple channels. The
samples of different channels may or may
not be interleaved.
We use one free function to query for
interleaved samples and a different one
for non-interleaved samples

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 14 / 22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?
std::variant

each object may hold a different type at
runtime
the get() free function can be used to
get a reference to the contents

V = std::variant<int,float> can be
queried with

int& std::get<int>(V&) and
float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

A C++ object for holding samples and
metadata

We use templated free functions to get a
pointer to samples.
If it is not the right type the function can
throw, abort() or return nullptr.
We can infer the type from the return
type of the succeeding function.

There may be multiple channels. The
samples of different channels may or may
not be interleaved.
We use one free function to query for
interleaved samples and a different one
for non-interleaved samples

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 14 / 22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?
std::variant

each object may hold a different type at
runtime
the get() free function can be used to
get a reference to the contents

V = std::variant<int,float> can be
queried with

int& std::get<int>(V&) and
float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

A C++ object for holding samples and
metadata

We use templated free functions to get a
pointer to samples.
If it is not the right type the function can
throw, abort() or return nullptr.
We can infer the type from the return
type of the succeeding function.
There may be multiple channels. The
samples of different channels may or may
not be interleaved.

We use one free function to query for
interleaved samples and a different one
for non-interleaved samples

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 14 / 22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?
std::variant

each object may hold a different type at
runtime
the get() free function can be used to
get a reference to the contents

V = std::variant<int,float> can be
queried with

int& std::get<int>(V&) and
float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

A C++ object for holding samples and
metadata

We use templated free functions to get a
pointer to samples.
If it is not the right type the function can
throw, abort() or return nullptr.
We can infer the type from the return
type of the succeeding function.
There may be multiple channels. The
samples of different channels may or may
not be interleaved.
We use one free function to query for
interleaved samples and a different one
for non-interleaved samples

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 14 / 22

Connecting samples with metadata

Example for a type supporting only 44.1kHz stereo 16bit PCM
unsigned get_sample_rate(const CdAudioBuffer&) { return 44100;}
unsigned short get_number_of_channels(const CdAudioBuffer&) { return 2;}
unsigned get_number_of_samples(const CdAudioBuffer&);
const int16_t* get_interleaved_samples(const CdAudioBuffer&);

Example for a type in intermediate processing
double get_sample_rate(const ResampledBuffer&);
unsigned get_number_of_channels(const ResampledBuffer&);
size_t get_number_of_samples(const ResampledBuffer&);
std::span<const float> get_samples_from_channel(const ResampledBuffer&, unsigned c);

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 15 / 22

Connecting samples with metadata

Example for a templated type
template<typename T>
double get_sample_rate(const juce::AudioBuffer<T>&) {
return 0.0; }
template<typename T>
unsigned get_number_of_channels(const juce::AudioBuffer<T>& b) {
return b.getNumChannels(); }
template<typename T>
size_t get_number_of_samples(const juce::AudioBuffer<T>& b) {
return b.getNumSamples(); }
template<typename T>
const T* get_samples_for_channel(const juce::AudioBuffer<T>& b, int c) {
return b.getReadPointer(c); }

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 16 / 22

Connecting samples with metadata

Example for a type supporting multiple encodings at runtime
unsigned get_sample_rate(const SampleBuffer&);
unsigned short get_number_of_channels(const SampleBuffer&);
size_t get_number_of_samples(const SampleBuffer&);
template <typename T>
const T* get_interleaved_samples(const SampleBuffer&);
template <>
const int16_t* get_interleaved_samples<int16_t>(const SampleBuffer&);
template <>
const float* get_interleaved_samples<float>(const SampleBuffer&);
template <typename T>
const T* get_samples_from_channel(const SampleBuffer&, unsigned);
template <>
const int16_t* get_interleaved_samples(const SampleBuffer&, unsigned);

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 17 / 22

Connecting samples with metadata

The advantage of using free functions is that we can add them after the fact without modifiying the
source or requiring a rebuild of the main application:

Add a new unit test that implements these functions.
Add the test binary as context to the debugger when debugging the main application.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 18 / 22

Detected Audio Data

1 We can create a list of all objects in memory
2 We can specify which types hold audio data and how to get metadata for them.
3 When looking at memory contents, the debugger can tell us “you are looking at a 16bit waveform”.
4 This allows the debugger to export the samples in universally understood file formats like WAV or

AIFF.

5 That requires knowing the sample rate, which may not be stored with the buffer and might need to
be provided out-of-band.

6 Can we do more?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 19 / 22

Detected Audio Data

1 We can create a list of all objects in memory
2 We can specify which types hold audio data and how to get metadata for them.
3 When looking at memory contents, the debugger can tell us “you are looking at a 16bit waveform”.
4 This allows the debugger to export the samples in universally understood file formats like WAV or

AIFF.
5 That requires knowing the sample rate, which may not be stored with the buffer and might need to

be provided out-of-band.
6 Can we do more?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 19 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.
3 The first thing to check is whether the problem exists in any of the inputs or only in the output.
4 We can extract the individual waveforms into files, open them in an external program and look at

the spectrogram or play them.
5 We can configure the debugger to visualize a waveform and look at the spectrogram in the

debugger.
6 We can write a Python script that detects high-frequency clicks and have the debugger run the

script on the inputs.
7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.

3 The first thing to check is whether the problem exists in any of the inputs or only in the output.
4 We can extract the individual waveforms into files, open them in an external program and look at

the spectrogram or play them.
5 We can configure the debugger to visualize a waveform and look at the spectrogram in the

debugger.
6 We can write a Python script that detects high-frequency clicks and have the debugger run the

script on the inputs.
7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.
3 The first thing to check is whether the problem exists in any of the inputs or only in the output.

4 We can extract the individual waveforms into files, open them in an external program and look at
the spectrogram or play them.

5 We can configure the debugger to visualize a waveform and look at the spectrogram in the
debugger.

6 We can write a Python script that detects high-frequency clicks and have the debugger run the
script on the inputs.

7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.
3 The first thing to check is whether the problem exists in any of the inputs or only in the output.
4 We can extract the individual waveforms into files, open them in an external program and look at

the spectrogram or play them.

5 We can configure the debugger to visualize a waveform and look at the spectrogram in the
debugger.

6 We can write a Python script that detects high-frequency clicks and have the debugger run the
script on the inputs.

7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.
3 The first thing to check is whether the problem exists in any of the inputs or only in the output.
4 We can extract the individual waveforms into files, open them in an external program and look at

the spectrogram or play them.
5 We can configure the debugger to visualize a waveform and look at the spectrogram in the

debugger.

6 We can write a Python script that detects high-frequency clicks and have the debugger run the
script on the inputs.

7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.
3 The first thing to check is whether the problem exists in any of the inputs or only in the output.
4 We can extract the individual waveforms into files, open them in an external program and look at

the spectrogram or play them.
5 We can configure the debugger to visualize a waveform and look at the spectrogram in the

debugger.
6 We can write a Python script that detects high-frequency clicks and have the debugger run the

script on the inputs.

7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging

1 Let’s say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

2 There are annoying high-frequency clicks in the output.
3 The first thing to check is whether the problem exists in any of the inputs or only in the output.
4 We can extract the individual waveforms into files, open them in an external program and look at

the spectrogram or play them.
5 We can configure the debugger to visualize a waveform and look at the spectrogram in the

debugger.
6 We can write a Python script that detects high-frequency clicks and have the debugger run the

script on the inputs.
7 If you want to, you can ask the AI agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 20 / 22

High-Level Debugging: Summary

1 The hardest part is modelling the world in useful abstractions. Your source code does that already.
2 Your program represents this model of the real world in bits and bytes.
3 A debugger allows you to see the bits and bytes of the program and to link machine code to source

code.
4 I think a debugger should also translate bits and bytes back to the types specified in your source

code.
5 We can then build new tooling that operates on these abstractions.
6 Different code bases can share the same tools if they use compatible abstractions.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 21 / 22

End

Thank you for your attention.

Feel free to ask questions!

These slides are available at
https://github.com/core-explorer/blog/blob/main/enumerate-audio.pdf
The prototype is available at https://github.com/core-explorer/core-explorer

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applications November 12, 2025 22 / 22

https://github.com/core-explorer/blog/blob/main/enumerate-audio.pdf
https://github.com/core-explorer/core-explorer

