ENUMERATE AND EXTRACT AUDIO
BUFFERS WHEN DEBUGGING (++
APPLICATIONS

Debugging Applications

Enterprise Applications:

o Enterprise applications are concerned with
crashes and security vulnerabilities due to
out of bounds memory accesses.

@ Security vulnerabilities have become big

business and a lot of new tooling focuses
on finding or exploiting vulnerabilities.

@ Defects in applications that are not
security problems are not treated as high
priority.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 1/22

Debugging Applications

Enterprise Applications:

o Enterprise applications are concerned with
crashes and security vulnerabilities due to
out of bounds memory accesses.

@ Security vulnerabilities have become big
business and a lot of new tooling focuses
on finding or exploiting vulnerabilities.

@ Defects in applications that are not
security problems are not treated as high
priority.

Henning Meyer

Signal Processing Applications:

Enumerate and Extract Audio Buffers from C++ Applic:

Signal processing algorithms may require
complex addressing schemes that can be
100% memory safe and still be wrong.

Signal processing bugs will ruin the
experience and cannot be ignored.

We cannot tell whether data is valid by
looking at a single sample, we need to
evaluate the entire buffer.

Standard debugging tools have poor
support for that.

Lots of custom tooling in various code
bases.

November 12, 2025 1/22

Turning Unstructured Data into Structured Data

Memory Contents in a C++ application are structured via the type system.
Debuggers are unaware of this structure except for local and global variables.

C++ applications use RAIl to manage memory and other resources.

Typical examples are containers like std: :vector and std: :unordered_map and smart pointers
like std: :shared_ptr and std: :unique_ptr.

@ Production code bases have many examples of containers and smart pointers outside the standard
library.

o Ultimately all resources are owned by local and global variables either directly or indirectly.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 2/22

Examing Memory with GDB

OIS T
struct Data { (gdb)

int val = 42;
std: :vector<int> more =
{1, 2, 3}

b

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

GDB commands
struct Data { (gdb) print data

int val = 42;
std: :vector<int> more =
{1, 2, 3}

b

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

GDB commands

struct Data { (gdb) print data
int val = 42; $1 = {get() = 0x500b0}
std: :vector<int> more = (gdb)
{1, 2, 3%};
3ig

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

GDB commands

struct Data { (gdb) print data
int val = 42; $1 = {get() = 0x500b0}
std: :vector<int> more = (gdb) print xdata
{1, 2, 3};
};

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

GDB commands

struct Data { (gdb) print data
int val = 42; $1 = {get() = 0x500b0}
std: :vector<int> more = (gdb) print xdata
{1, 2, 33}; $2 = {val=42, more={1, 2, 3}}
3ig (gdb)

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

GDB commands

struct Data { (gdb) print data
int val = 42; $1 = {get() = 0x500b0}
std: :vector<int> more = (gdb) print xdata
{1, 2, 33}; $2 = {val=42, more={1, 2, 3}}
}; (gdb) print &data

A\

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

struct Data {

int val = 42;
std: :vector<int> more =
{1, 2, 3}

b

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer

Enumerate and Extract Audio Buffers from C++ Applic:

GDB commands

(gdb) print data

$1 = {get() = 0x500b0}

(gdb) print xdata

$2 = {val=42, more={1, 2, 3}}
(gdb) print &data

$3 = 0x40020

(gdb)

N\

November 12, 2025

3/22

Examing Memory with GDB

struct Data {

int val = 42;
std: :vector<int> more =
{1, 2, 3}

b

std: :unique_ptr<Data> data =
std: :make_unique<Data>();

Henning Meyer

Enumerate and Extract Audio Buffers from C++ Applic:

GDB commands

(gdb) print data

$1 = {get() = 0x500b0}

(gdb) print xdata

$2 = {val=42, more={1, 2, 3}}
(gdb) print &data

$3 = 0x40020

(gdb) x 0x40020

November 12, 2025

3/22

Examing Memory with GDB

GDB commands

(gdb) print data

struct Data {
$1 = {get() = 0x500b0}

int val = 42;
std: :vector<int> more = (gdb) print *data
{1, 2, 3} $2 = {val=42, more={1, 2, 3}}
I (gdb) print &data
$3 = 0x40020

= (gdb) x 0x40020

std: :unique_ptr<Data> data =
std: :make_unique<Data>();) 0x40020 <data>: 0x500b0

A\

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

(Code [GDB commands

struct Data { (gdb) print data
int val = 42; $1 = {get() = 0x500b0}
std: :vector<int> more = (gdb) print *data
{1, 2, 33}; $2 = {val=42, more={1, 2, 3}}
}; (gdb) print &data
$3 = 0x40020
std: :unique_ptr<Data> data = (gdb) x 0x40020
std: :make_unique<Data>();) 0x40020 <data>: 0x500b0
(gdb) x @x500b0

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

(Code ___________J GDB commands

struct Data { (gdb) print data
int val = 42; $1 = {get() = 0x500b0}
std: :vector<int> more = (gdb) print *data
{1, 2, 3} $2 = {val=42, more={1, 2, 3}}
}; (gdb) print &data
$3 = 0x40020
std: :unique_ptr<Data> data = (gdb) x 0x40020
std: :make_unique<Data>();) 0x40020 <data>: 0x500b0
(gdb) x @x500b0
0x500b0: 0x0000002a

A\

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 3/22

Examing Memory with GDB

@ GDB can work forwards from a container or smart pointer to the addresses of the contained
elements

@ it cannot work backwards from the address to “l know there is a struct Data at this address”

@ it only supports this if someone has manually created a pretty printer for that type

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 4/22

Examing Memory with GDB

@ GDB can work forwards from a container or smart pointer to the addresses of the contained
elements

it cannot work backwards from the address to “I know there is a struct Data at this address”

it only supports this if someone has manually created a pretty printer for that type

| want to support all containers and smart pointers and | don't want to write pretty printers by hand

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 4/22

Examing Memory with GDB

GDB can work forwards from a container or smart pointer to the addresses of the contained
elements

@ it cannot work backwards from the address to “l know there is a struct Data at this address”

@ it only supports this if someone has manually created a pretty printer for that type

@ | want to support all containers and smart pointers and | don't want to write pretty printers by hand
o

| want to traverse all containers, store the addresses of found objects and allow reverse lookup by
address

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 4/22

Generically Iterate over any Container

How can a C++ debugger iterate over
elements in a container?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 5 /22

Generically Iterate over any Container

How can a C++ compiler iterate over
elements in a container?

How can a C++ debugger iterate over
elements in a container?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 5 /22

Generically Iterate over any Container

How can a C++ debugger iterate over How can a C++ compiler iterate over
elements in a container? elements in a container?
(gdb) print container for(auto&& e : container) {
std::cout « e « std::endl;
3
- v,

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 5 /22

Generically Iterate over any Container

How can a C++ debugger iterate over
elements in a container?

(gdb) print container

How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

i v
X

By calling begin() and end() behind the
scenes.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025

5/22

Generically Iterate over any Container

How can a C++ debugger iterate over
elements in a container?

(gdb) print container

How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

i v
X

By calling begin() and end() behind the
scenes.

By calling operator*() and operator++() on
the obtained iterators.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 5 /22

Generically Iterate over any Container

How can a C++ debugger iterate over How can a C++ compiler iterate over
elements in a container? elements in a container?
(gdb) print container for(auto&& e : container) {
std::cout « e « std::endl;

) 3 |

- v,
By executing begin() and end() behind the By calling begin() and end() behind the
scenes. scenes.

) By calling operator*() and operator++() on

the obtained iterators.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 5 /22

Generically Iterate over any Container

How can a C++ debugger iterate over
elements in a container?

(gdb) print container

A

By executing begin() and end() behind the
scenes.

By executing operator*() and operator++()

on the obtained iterators.)

Henning Meyer

Enumerate and Extract Audio Buffers from C++ Applic:

How can a C++ compiler iterate over
elements in a container?

for(auto&& e : container) {
std::cout « e « std::endl;

} A

By calling begin() and end() behind the
scenes.

By calling operator*() and operator++() on
the obtained iterators.

November 12, 2025 5 /22

Object Enumeration Algorithm

@ find all containers, start with global and local variables
@ run an interpreter on the machine code of begin() and end() to get iterators
© run an interpreter on the machine code of operator*() to get a valid pointer

@ run an interpreter on the machine code of operator++() to get more iterators

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 6/22

Object Enumeration Algorithm

@ find all containers, start with global and local variables

@ run an interpreter on the machine code of begin() and end() to get iterators
© run an interpreter on the machine code of operator*() to get a valid pointer
@ run an interpreter on the machine code of operator++() to get more iterators

@ This relies on the public interface of a type and works for user-defined container types without
requiring additional configuration

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 6/22

Interpreter for Machine Code

Here is the complete disassembly for the necessary functions in a libstdc++ container on x86-64:

std: :string: :begin() std::string::end()

endbr64 endbr64

movqg (%rdi), %rax movqg (%rdi), %rax

retq addq 8(%rdi), %rax
retq

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 7/22

Object Enumeration beyond Containers

© Smart pointers work just the same: use operator bool() and operatorx().

© Smart pointers might be declared with an interface type, not the concrete type.
The concrete type can be recovered if the declared type has virtual methods.

© optional and expected work just the same: has_value() and value().
@ std::function does not have a public interface to get the contained value.

Q@ std::variant will be discussed later.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 8/22

Object Enumeration: Theory vs Practice

Let us assume the method works flawlessly:

@ We will discover millions of objects,
thousands of types

@ It is not enough to make the debugger
aware of objects, we need to find ways to
make use of this information without
causing information overload.

o | want to allow debugging in terms of the
application’s object model, not raw bits
and bytes

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 9/22

Object Enumeration: Theory vs Practice

Let us assume the method works flawlessly: Can we assume the method works flawlessly?

@ We will discover millions of objects,

@ Release builds often show optimized

thousands of types away for local variables.

@ It is not enough to make the debugger

aware of objects, we need to find ways to remove unused functions.

make use of this information without
causing information overload.

o | want to allow debugging in terms of the
application’s object model, not raw bits
and bytes

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic:

November 12, 2025

@ Release builds inline simple functions and

9/22

ect Enumeration: Release Builds

Can we assume the method works flawlessly?

@ Release builds often show optimized
away for local variables.

@ Release builds inline simple functions and
remove unused functions.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 10 /22

ect Enumeration: Release Builds

Can we assume the method works flawlessly? A variable will show as optimized away if the

o Release builds often show optimized debugger cannot get its memory location.

away for local variables. @ Variables with a non-trivial destructor

@ Release builds inline simple functions and typ.ica||y reside'in memory anc.l not in .
remove unused functions. registers. A pointer, index or iterator will
be optimized more aggressively than a
container or smart pointer.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 10 /22

ect Enumeration: Release Builds

Can we assume the method works flawlessly? A variable will show as optimized away if the
o Release builds often show optimized debugger cannot get its memory location.
away for local variables. @ Variables with a non-trivial destructor
@ Release builds inline simple functions and typically reside in memory and not in
remove unused functions. registers. A pointer, index or iterator will

be optimized more aggressively than a
container or smart pointer.

@ Missing functions are quite different from
missing variables. Functions don’t have
state.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 10 /22

Object Enumeration: Release Builds

Can we assume the method works flawlessly? A variable will show as optimized away if the
o Release builds often show optimized debugger cannot get its memory location.
away for local variables. @ Variables with a non-trivial destructor
@ Release builds inline simple functions and typically reside in memory and not in
remove unused functions. registers. A pointer, index or iterator will

be optimized more aggressively than a
container or smart pointer.

@ Missing functions are quite different from
missing variables. Functions don't have
state.

e Functions can be recovered from an
unoptimized build and used on the
optimized build (we run them in an
interpreter anyway).

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 10 /22

Object Enumeration: Build Recommendations

@ All builds, even Release builds, should be built with debugging information. You can strip the
debugging information before shipping code to customers.

@ Debug information should be as detailed as possible (use the compiler option -g3, not just -g).
You can use compressed debug information if the size of debug information is a concern.

@ There should be an unoptimized build that is identical to the release build except for optimization
flags. Sometimes Debug builds contain additional code or even additional members in structs
compared to Release builds.

@ Use the most recent compiler available.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 11 /22

Visualizing Memory Contents

Uncompressed images are easiest. We know how to show a simplified image: by downscaling
There is still a lot of freedom in encoding the pixels in images

Uncompressed audio is a lot more straightforward.

Samples will be encoded as signed integers or floating point numbers.

Unlike images, there is a direct correspondence between C++ built-in types and sample encodings

24bit integers have been added to C23 but not yet to C++ (clang supports them in C++ as an
extension)

metadata consists of the sample rate and number of channels

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 12 /22

Extracting Samples and Metadata

Application 1 Application 2 Application 3

Hard-coded sample rate, using an application that uses one

hard-coded numer of channels, juice: :AudioBuffer<T>, type that can hold different

interleaved stereo templated by sample type and sample types at runtime,
non-interleaved channels specified via an enum

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 13 /22

Extracting Samples and Metadata

Application 1

Application 2

Application 3

Hard-coded sample rate,
hard-coded numer of channels,
interleaved stereo

using

juice: :AudioBuffer<T>,
templated by sample type and
non-interleaved channels

There is no uniform interface, there is no std::audio concept in C++.

Henning Meyer

Enumerate and Extract Audio Buffers from C++ Applic:

an application that uses one
type that can hold different
sample types at runtime,
specified via an enum

November 12, 2025 13 /22

Extracting Samples and Metadata

Application 1 Application 2 Application 3

Hard-coded sample rate, using an application that uses one

hard-coded numer of channels, juice: :AudioBuffer<T>, type that can hold different

interleaved stereo templated by sample type and sample types at runtime,
non-interleaved channels specified via an enum

There is no uniform interface, there is no std::audio concept in C++.
This will require some kind of configuration for the debugger:

@ XML like NatVis used in Microsoft products
@ Python code as used by GDB and LLDB
@ configuration via functions in the binary used by the debugger

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 13 /22

Extracting Samples and Metadata

Application 1 Application 2 Application 3

Hard-coded sample rate, using an application that uses one

hard-coded numer of channels, juice: :AudioBuffer<T>, type that can hold different

interleaved stereo templated by sample type and sample types at runtime,
non-interleaved channels specified via an enum

There is no uniform interface, there is no std::audio concept in C++.
This will require some kind of configuration for the debugger:

@ XML like NatVis used in Microsoft products
@ Python code as used by GDB and LLDB

@ configuration via functions in the binary used by the debugger

get_sample_rate()

get_number_of_channels()

get_number_of_samples()

either get_interleaved_samples() or get_samples_for_channel() or both

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 13 /22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?

std: :variant A C++ object for holding samples and
@ each object may hold a different type at metadata
runtime @ We use templated free functions to get a
o the get() free function can be used to pointer to samples.

get a reference to the contents

V = std::variant<int,float> can be
queried with

@ int& std::get<int>(V&) and
o float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 14 /22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?

std: :variant A C++ object for holding samples and
@ each object may hold a different type at metadata
runtime @ We use templated free functions to get a
o the get() free function can be used to pointer to samples.
get a reference to the contents @ If it is not the right type the function can
V = std::variant<int,float> can be throw, abort() or return nullptr.
queried with

@ int& std::get<int>(V&) and
o float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 14 /22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?

std: :variant A C++ object for holding samples and
@ each object may hold a different type at metadata
runtime @ We use templated free functions to get a
o the get() free function can be used to pointer to samples.
get a reference to the contents o If it is not the right type the function can
V = std::variant<int,float> can be throw, abort() or return nullptr.
queried with @ We can infer the type from the return
@ int& std::get<int>(V&) and type of the succeeding function.

o float& std::get<float>(V&)

Exactly one of these functions will return a
reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 14 /22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?

std: :variant A C++ object for holding samples and
@ each object may hold a different type at metadata
runtime @ We use templated free functions to get a
o the get() free function can be used to pointer to samples.
get a reference to the contents o If it is not the right type the function can
V = std::variant<int,float> can be throw, abort() or return nullptr.
queried with @ We can infer the type from the return
e int& std::get<int>(V&) and type of the succeeding function.
o floatd std::get<float>(V&) @ There may be multiple channels. The

samples of different channels may or may

Exactly one of these functions will return a .
not be interleaved.

reference to valid data, the others will not
return a value. The succeeding function allows
us to infer the type.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 14 /22

Connecting samples with metadata

How can we use a C++ function to tell us at runtime about the compile-time type used for the samples
in a buffer?

std: :variant A C++ object for holding samples and
@ each object may hold a different type at metadata
runtime @ We use templated free functions to get a
o the get() free function can be used to pointer to samples.
get a reference to the contents o If it is not the right type the function can
V = std::variant<int,float> can be throw, abort() or return nullptr.
queried with @ We can infer the type from the return
@ int& std::get<int>(V&) and type of the succeeding function.
o floatd std::get<float>(V&) @ There may be multiple channels. The

samples of different channels may or may

Exactly one of these functions will return a .
not be interleaved.

reference to valid data, the others will not _

return a value. The succeeding function allows @ We use one free function to query for

us to infer the type. interleaved samples and a different one
for non-interleaved samples

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 14 /22

Connecting samples with metadata

Example for a type supporting only 44.1kHz stereo 16bit PCM

unsigned get_sample_rate(const CdAudioBuffer&) { return 44100;}

unsigned short get_number_of_channels(const CdAudioBuffer&) { return 2;}
unsigned get_number_of_samples(const CdAudioBuffer&);

const int16_t* get_interleaved_samples(const CdAudioBuffer&);

v

Example for a type in intermediate processing

double get_sample_rate(const ResampledBuffer&);

unsigned get_number_of_channels(const ResampledBuffer&);

size_t get_number_of_samples(const ResampledBuffer&);

std: :span<const float> get_samples_from_channel(const ResampledBuffer&, unsigned c);

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 15 /22

Connecting samples with metadata

Example for a templated type

template<typename T>

double get_sample_rate(const juce::AudioBuffer<T>&) {

return 0.90; }

template<typename T>

unsigned get_number_of_channels(const juce::AudioBuffer<T>& b) {
return b.getNumChannels(); }

template<typename T>

size_t get_number_of_samples(const juce::AudioBuffer<T>& b) {
return b.getNumSamples(); }

template<typename T>

const Tx get_samples_for_channel(const juce::AudioBuffer<T>& b, int c) {
return b.getReadPointer(c); }

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 16 / 22

Connecting samples with metadata

Example for a type supporting multiple encodings at runtime

unsigned get_sample_rate(const SampleBuffer&);

unsigned short get_number_of_channels(const SampleBuffer&);

size_t get_number_of_samples(const SampleBuffer&);

template <typename T>

const Tx get_interleaved_samples(const SampleBuffer&);

template <>

const int16_t* get_interleaved_samples<int16_t>(const SampleBuffer&);
template <>

const floatx get_interleaved_samples<float>(const SampleBufferg&);
template <typename T>

const Tx get_samples_from_channel(const SampleBuffer&, unsigned);
template <>

const int16_t* get_interleaved_samples(const SampleBuffer&, unsigned);

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 17 /22

Connecting samples with metadata

The advantage of using free functions is that we can add them after the fact without modifiying the
source or requiring a rebuild of the main application:

@ Add a new unit test that implements these functions.

@ Add the test binary as context to the debugger when debugging the main application.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 18 /22

Detected Audio Data

@ We can create a list of all objects in memory
© We can specify which types hold audio data and how to get metadata for them.
© When looking at memory contents, the debugger can tell us “you are looking at a 16bit waveform".

@ This allows the debugger to export the samples in universally understood file formats like WAV or
AIFF.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 19 /22

Detected Audio Data

@ We can create a list of all objects in memory
© We can specify which types hold audio data and how to get metadata for them.
© When looking at memory contents, the debugger can tell us “you are looking at a 16bit waveform".

@ This allows the debugger to export the samples in universally understood file formats like WAV or
AIFF.

@ That requires knowing the sample rate, which may not be stored with the buffer and might need to
be provided out-of-band.

@ Can we do more?

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 19 /22

High-Level Debugging

© Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20/22

High-Level Debugging

Q Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

@ There are annoying high-frequency clicks in the output.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20/22

High-Level Debugging

Q Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

© There are annoying high-frequency clicks in the output.

© The first thing to check is whether the problem exists in any of the inputs or only in the output.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20 /22

High-Level Debugging

Q Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

© There are annoying high-frequency clicks in the output.
© The first thing to check is whether the problem exists in any of the inputs or only in the output.

@ We can extract the individual waveforms into files, open them in an external program and look at
the spectrogram or play them.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20 /22

High-Level Debugging

© 0600 O

Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

There are annoying high-frequency clicks in the output.

The first thing to check is whether the problem exists in any of the inputs or only in the output.
We can extract the individual waveforms into files, open them in an external program and look at
the spectrogram or play them.

We can configure the debugger to visualize a waveform and look at the spectrogram in the
debugger.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20 /22

High-Level Debugging

© 0 000 O

Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

There are annoying high-frequency clicks in the output.
The first thing to check is whether the problem exists in any of the inputs or only in the output.

We can extract the individual waveforms into files, open them in an external program and look at
the spectrogram or play them.

We can configure the debugger to visualize a waveform and look at the spectrogram in the
debugger.

We can write a Python script that detects high-frequency clicks and have the debugger run the
script on the inputs.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20 /22

High-Level Debugging

© 06 0 000 O

Let's say we are debugging a complicated function that mixes several input channels into one and
resamples the output.

There are annoying high-frequency clicks in the output.
The first thing to check is whether the problem exists in any of the inputs or only in the output.

We can extract the individual waveforms into files, open them in an external program and look at
the spectrogram or play them.

We can configure the debugger to visualize a waveform and look at the spectrogram in the
debugger.

We can write a Python script that detects high-frequency clicks and have the debugger run the
script on the inputs.

If you want to, you can ask the Al agent in your IDE to perform these tasks for you.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 20 /22

High-Level Debugging: Summary

© The hardest part is modelling the world in useful abstractions. Your source code does that already.
© Your program represents this model of the real world in bits and bytes.

© A debugger allows you to see the bits and bytes of the program and to link machine code to source
code.

@ | think a debugger should also translate bits and bytes back to the types specified in your source
code.

@ We can then build new tooling that operates on these abstractions.

@ Different code bases can share the same tools if they use compatible abstractions.

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 21/22

Thank you for your attention.

Feel free to ask questions!

These slides are available at
https://github.com/core-explorer/blog/blob/main/enumerate-audio.pdf
The prototype is available at https://github.com/core-explorer/core-explorer

Henning Meyer Enumerate and Extract Audio Buffers from C++ Applic: November 12, 2025 22/22

https://github.com/core-explorer/blog/blob/main/enumerate-audio.pdf
https://github.com/core-explorer/core-explorer

