
A Case Study of Porting Legacy Code from Exponential Audio

Creating From Legacy Code

Oct 28, 2025 Harriet Drury

Hello! My name is Harriet

● Software Engineer at Native Instruments
● Working on iZotope Products for 2 years
● DSP/ML Focus
● Guitarist
● Can pronounce Cynefin Correctly

Introduction

Reverbs, Quickly…

http://articles.ircam.fr/textes/Jot97b/

Jean-Marc Jot

Efficient Models for Reverberation and
Distance Rendering in Computer Music
and Virtual Audio Reality

https://ccrma.stanford.edu/~jos/pasp/pasp.h
tml

PHYSICAL AUDIO SIGNAL PROCESSING

FOR VIRTUAL MUSICAL INSTRUMENTS
AND AUDIO EFFECTS

https://valhalladsp.com/2010/12/21/the-rever
b-beard/

The Reverb Beard - Valhalla DSP

Something that I find rather curious, is
that many of the reverb pioneers sported
some seriously impressive beards.

http://articles.ircam.fr/textes/Jot97b/

Reverbs, Quickly…

Reverbs, Quickly…

Reverbs, Quickly…

Reverbs, Quickly…

Digital Modelling - Capture Impulse Response IR

From: https://www.prosoundweb.com/what-is-an-impulse-response/

Digital Modelling - Capture Impulse Response IR & Convolve

Example Impulse Response Plugin - Altiverb

Example Convolution Plugin - Trash

Digital Modelling - Impulse Response

Digital Modelling - Impulse Response

You

Digital Modelling - Impulse Response

Digital Modelling - Impulse Response

Digital Modelling - Algorithmic Reverbs

idk, it just sounds like
Boston Symphony
Hall

Digital Modelling - Algorithmic Reverbs

An algorithmic reverb is based on a mathematical
model that simulates the behavior of a physical
space.

Digital Modelling - Algorithmic Reverbs

● Reflections

Digital Modelling - Algorithmic Reverbs

● Reflections

● Tail

Digital Modelling - Algorithmic Reverbs

● Reflections

● Tail

● Diffusion

Lexicon Hardware

Founded by Michael Carnes in the 2010s

Reverbs based on Lexicon Hardware

Stereo & Surround Plugins

Exponential Audio

Musician, Composer, Engineer, Maker of
Great Things

Studied at Boston University and M.I.T

Now retired from engineering

Michael Carnes

Acquired by iZotope in 2019

M1 support added with UI refresh in 2022

Exponential Audio

1st Generation

2nd Generation - 2017 Onwards

Goals

Purity, no noticeable modulation, completely
natural decay.

● Early Reflections similar to Phoenixverb/
R2

Stratus

Goals

Fat tail, character, modulation as a feature

● Ability to ‘Freezeʼ a buffer, in perpetuity
● Chorusing Junction

Symphony

Released April 2025

Two Tank Based reverb engines Stratus &
Symphony)

Built by incorporating Exponential Audio DSP
into a shared lib in iZotopeʼs codebase

Equinox

Equinox

1. Main
controls:
Contains the
most
important
settings.

2. Header: Contains global
controls including the
Preset selector.

3. Additional controls:
Provide detailed
settings for the reverb
engine.

4. EQ section: Lets you
adjust the filtering for
the input signal, the
early reflections, and
the tail of the reverb.

5. Dynamics Controls:
Lets you apply a
saturation, a
compression, and a
gate to the reverb
sound.

Code maintained by someone other than the
original author

Legacy Code

Code maintained by someone other than the
original author

Legacy Code

Legacy Code

Legacy Code

Customised JUCE Dependency

Originates from circa 2016

● Custom changes to surround
sound routing

● Internal Deps all frozen
● Led to a UI bug when Apple

changed an API

Legacy Code

Legacy Code - Summary

● One Monolithic Repo
● Customised Framework Dependencies
● DSP shared between products

Source:
https://www.reddit.com/r/Programme
rHumor/comments/9xat04/the_ancien
t_code/

Legacy Code

Legacy Code

How can we future proof the DSP written by
Michael Carnes?

Legacy Code

1. Continue Building as is

Legacy Code

1. Continue Building as is

Pros

● Keeps revenue stream alive
● Branding stays consistent
● Respected code - if it ainʼt

broke…

Cons

● Slow release cycles
● obsolete technology
● Bugs/ instability
● There are only certain team

members who understand it

Legacy Code

2. Build as a Shared Lib?

Legacy Code

2. Build as a Shared Lib?

Pros

● Quick(ish)
● Clear API Boundary

Cons

● Version Hell
● You have to deploy a DLL
● There is no ‘cleanʼ DSP Layer
● No User Benefit

Legacy Code

3. Extract DSP, into a new, shared repo

Legacy Code

3. Extract DSP, into a new, shared repo

Pros

● Preserve existing DSP/ Value
● Future Proof the Technology
● Cross Product Potential
● Performance Optimisation

Opportunities
● Looked at By More Devs

Cons

● The Most Time Consuming
Option

● Risk: Untangling 15+ years of
coupled code introduces bugs

● API Design Complexity - how
do you cleanly abstract an
inherited class?

Legacy Code

3. Extract DSP, into a new, shared repo

Pros

● Preserve existing DSP/ Value
● Future Proof the Technology
● Cross Product Potential
● Performance Optimisation

Opportunities
● Looked at By More Devs

Cons

● The Most Time Consuming
Option

● Risk: Untangling 15+ years of
coupled code introduces bugs

● API Design Complexity - how
do you cleanly abstract an
inherited class?

Legacy Code

3. Extract DSP, into a new, shared repo

Pros

● Preserve existing DSP/ Value
● Future Proof the Technology
● Cross Product Potential
● Performance Optimisation

Opportunities
● Looked at By More Devs

Cons

● The Most Time Consuming
Option

● Risk: Untangling 15+ years of
coupled code introduces bugs

● API Design Complexity - how
do you cleanly abstract an
inherited class?

Legacy Code

3. Extract DSP, into a new, shared repo

Pros

● Preserve existing DSP/ Value
● Future Proof the Technology
● Cross Product Potential
● Performance Optimisation

Opportunities
● Looked at By More Devs

Cons

● The Most Time Consuming
Option

● Risk: Untangling 15+ years of
coupled code introduces bugs

● API Design Complexity - how
do you cleanly abstract an
inherited class?

In this repo, we have reimplemented
Exponential Audio Reverbs with minimal
changes using iZotope DSP APIs.

Named after the first reverb to be ported,
phoenixverb

Phoenixverb, the DSP repo

Active development since 2019

Contributions from many NI devs over the last
6 years

Phoenixverb, the DSP repo

Phoenixverb, the DSP repo

Old JUCE Version Lead to a UI Bug)

Monolithic Repo of all Exponential Audio
Code

Pre C17

Why Port?

August 2024  Next Gen Code Porting

Stratus/ Symphony Next Gen Code Porting - TODOs

● Get Stratus Ported First
● Divide Work by Class
● Discuss Shared Code as a Team &

Decide on Basic Class Layouts
● Add TDSP/ test Coverage
● Sit Back, Relax, Enjoy no Bugs or

Misfortunes

Stratus/ Symphony Next Gen Code Porting - The Game Plan

● Initial Commit
● Namespace the Class
● Rename Members/ Variables/ Class
● Modernise Loop Unrolling Vectorize

Block Processors)
● Collapse Multi Stage Init

General Class Porting TODOs

NOTE We are not trying to change the class structure of Stratus & Symphony, the
goal is to keep all the specific quirks & features of the code.

General Class Porting TODOs - Note

NOTE We are not trying to change the class structure of Stratus & Symphony, the
goal is to keep all the specific quirks & features of the code.

In fact acted as a engine to discussion around design patterns & code design

General Class Porting TODOs - Note

Code Adjustment - Loop Unrolling

Code Adjustment - Loop Unrolling/ Auto Vectorization

Loop unrolling is an optimization technique where the body
of a loop is duplicated multiple times within a single
iteration, reducing the number of loop control operations
(like incrementing the index and checking the loop
condition). This can improve performance by:

● Decreasing the overhead of loop control instructions.
● Allowing the compiler to better optimize code,

especially for SIMD/vector instructions.
● Improving instruction-level parallelism and cache

usage.

Code Adjustment - Loop Unrolling, MCʼs Code Example, Not Actual Code)

switch (GlobalPluginEnvironment.VectorSize) {
case SMALL_VECTOR_SIZE:
 for (int i = 0; i < SMALL_VECTOR_SIZE; ++i)
 process(i);
 break;
case DOUBLE_VECTOR_SIZE:
 for (int i = 0; i < DOUBLE_VECTOR_SIZE; ++i)
 process(i);
 break;
}

Code Adjustment - Loop Unrolling, Templated

template <int VectorSize>
void RunAllpass(float* input, float* output) {
 for (int i = 0; i < VectorSize; ++i)
 process(i);
}

Code Adjustment - Loop Unrolling

Aspect Original Code Updated Vectorized Code

Loop Structure Switch/case for each vector size Template-based, block processing

Code Duplication High (repeated loops) Low (single loop, reused via
templates)

Buffer Size Handling Tied to DAW/host buffer size Fixed internal block size,
DAW-agnostic

Maintenance Harder (add/change in multiple
places)

Easier (change in one place)

Compiler Optimization Fixed-size loops, but repetitive code Fixed-size, template, unrolled

Code Adjustment - Loop Unrolling, Optimisation Flags

// Unrolls & Vectorises when using (MSVC) /O2 & (GCC/
Clang) -O3

#include <vector>
void xyz(std::vector<float> a, std::vector<float> b)
{
 for (size_t i = 0; i < 3; i++) {
 a[i] += b[i];
 }
};

https://godbolt.org/z/8hxzx88T6

August - March - Porting & Equinox Plugin Bringup

● We have Stratus & Symphony DSP in
one plugin

● We have started adding our DSP to the
Plugin Adaptive Unmasking & EQ

● A Placeholder UI Appears!
● The bugs start……

March - We Ship a Beta with Adaptive Unmasking & EQ Added!

● We have Stratus & Symphony DSP in
one plugin

● We have started adding our DSP to the
Plugin Adaptive Unmasking & EQ

● A Placeholder UI Appears!
● The bugs start……

March - We Ship a Beta with Adaptive Unmasking & EQ Added!

What did we do to change this behaviour?

What we knew:

● Stratus Specific
● Occurs Reliably with Reverb Size set to

max (or min), & Reverb Time set to max
● Turning down the Early Reflections level

makes crackling in the tail more obvious

Bug Report! Our Tail is Crackling…

Bug Report! Our Tail is Crackling…

Bug Report! Our Tail is Crackling…

In some reverb modes,
the gain could surpass
1.0f

This does not differ from
the original code

Bug Report! Our Tail is Crackling…

In some reverb modes,
the gain could surpass
1.0f

This does not differ from
the original code

Solution, std::max

For this TailBloom class,
we clamped gains. The
high energy remains in
places

…as a feature, not a bug

April 2025  Equinox Launches

Conclusion - We Built a Reverb Plugin!

Between August 2024  April 2025, a team of 6 developers and 3 QAs:

● Ported Legacy Reverb Engines and implemented a seamless UI for switching
between the two.

● Created a new preset system for thousands of presets.
● Extended Multi-Channel Config Support 7.x.2, 7.x.6, 9.x.4, etc.).
● Included EQ & Adaptive Unmasking tech.
● Numerous other improvements Seeded Deterministic Randomness, Stabilised

Exploding Filters, Legacy Session Conversion, etc.).
● Retired Stratus & Symphony, keeping the DSP alive in a future proofed DSP

repository

Thank you!

Harriet Drury
harriet.drury@native-instruments.com

Thanks to my Talk Collaborators:
Roth Michaels
Alex Fink
Jefferson Hobbs
All of the ART Team & Audio Production Team!
Emma Fitzmaurice

