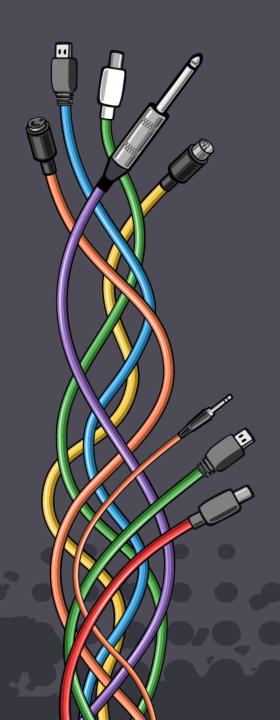


THE REAL WAVEFORM MATTERS

THE SAMPLES ARE NOT ALWAYS WHAT THEY SEEM

JAMIE ANGUS-WHITEOAK

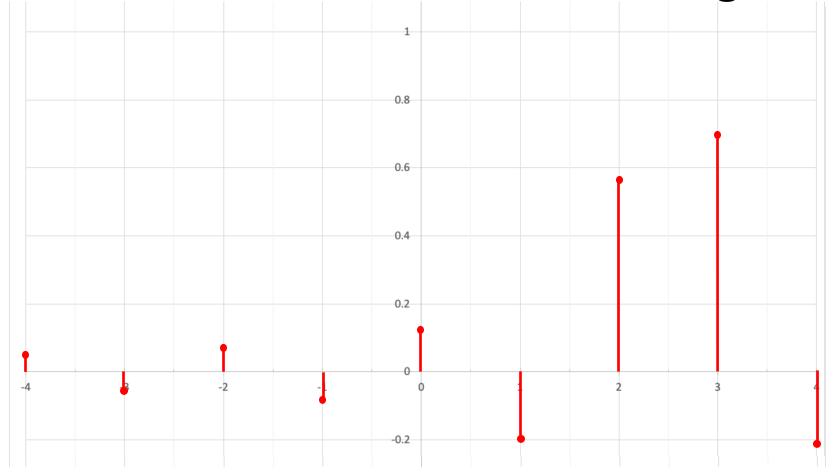


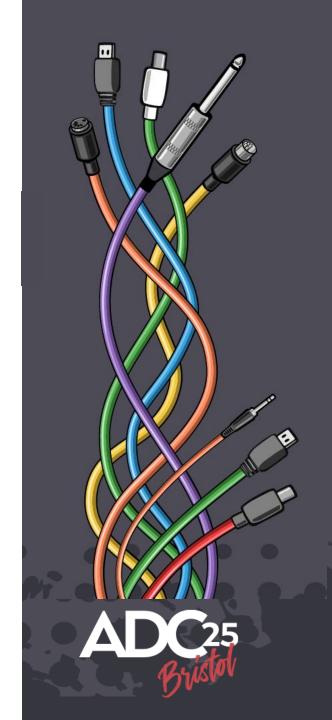
THE REAL WAVEFORM MATTERS

THE SAMPLES ARE NOT ALWAYS WHAT THEY SEEM

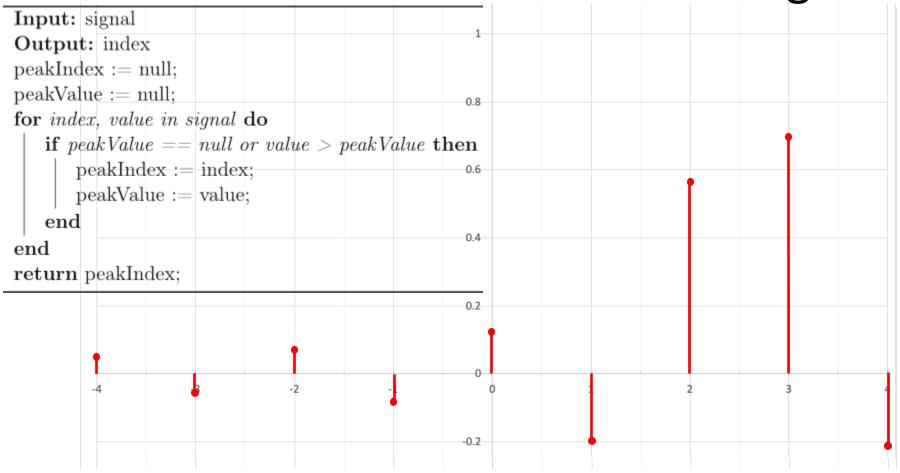
JAMIE ANGUS-WHITEOAK

What Is The Peak Value Of This Signal?

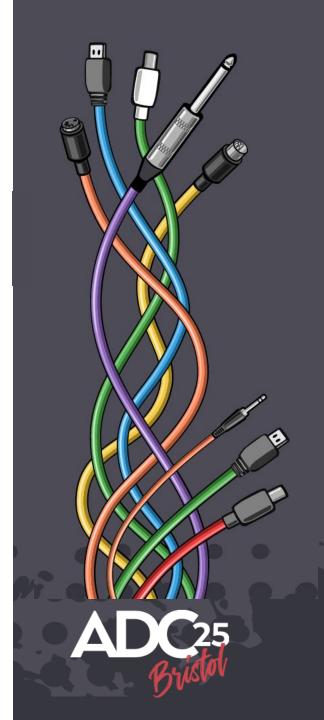




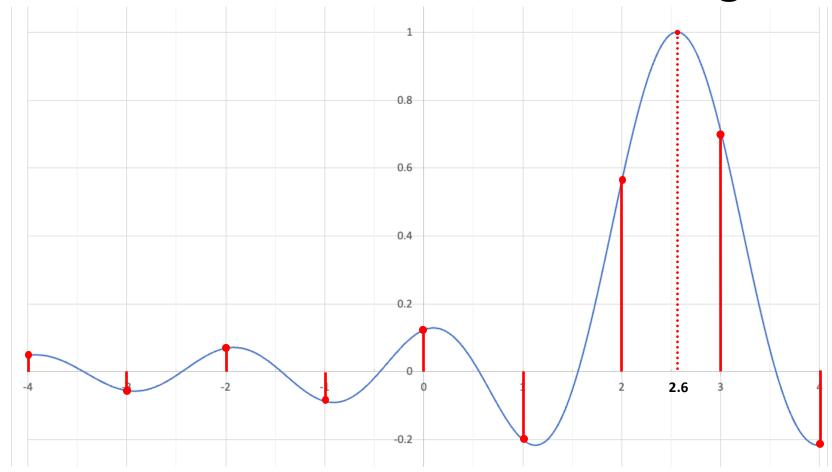
What Is The Peak Value Of This Signal?



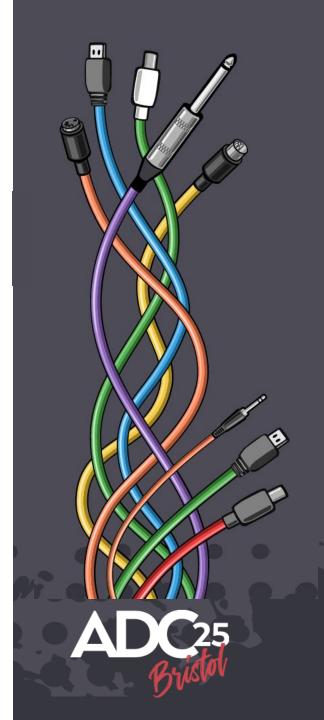
- A simplistic examination of sample values would suggest:
 - Peak sample value equal to 0.7
 - At sample number +3?



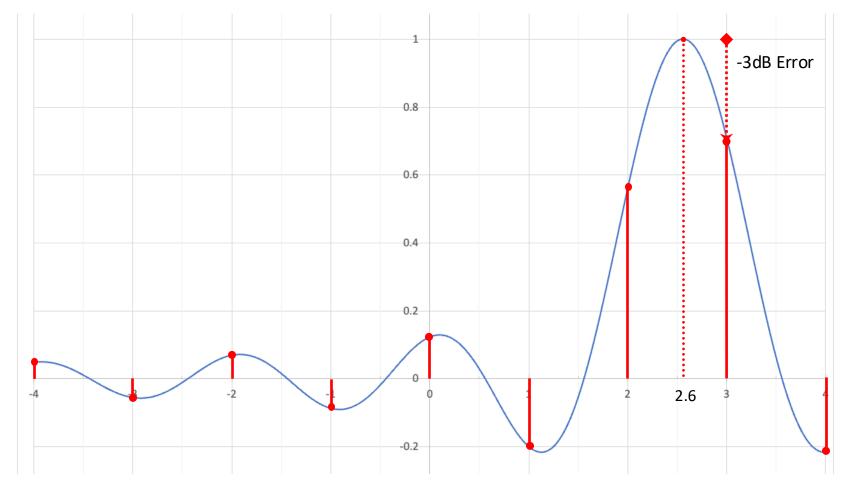
What Is The Peak Value Of This Signal?



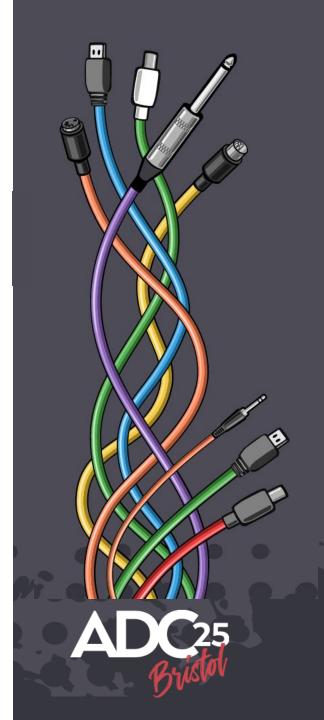
- But you would be wrong!
 - The peak value is actually 1!
 - And occurs between two samples at position 2.6

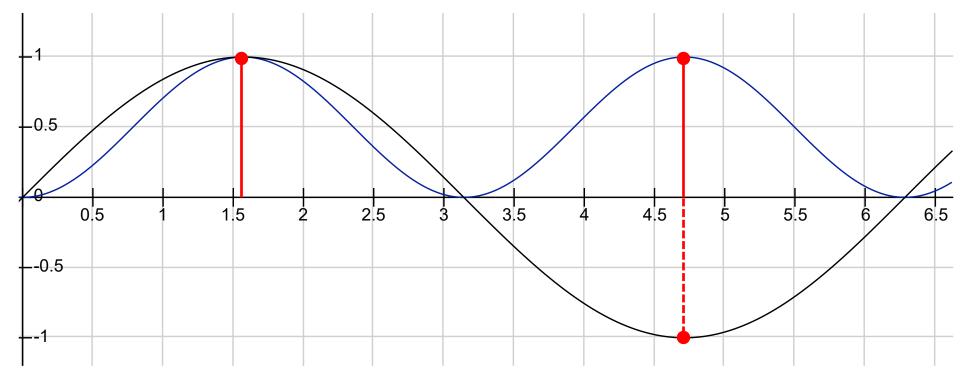


What Is The Peak Value Error?

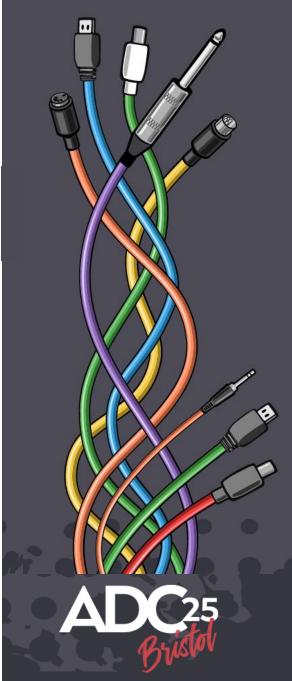


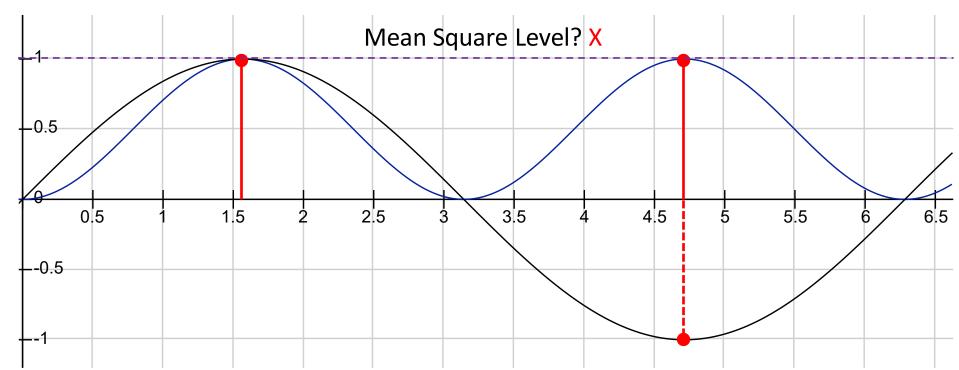
- This is a level error of -3dB!
 - That's significant in many applications
 - The time shift may also matter



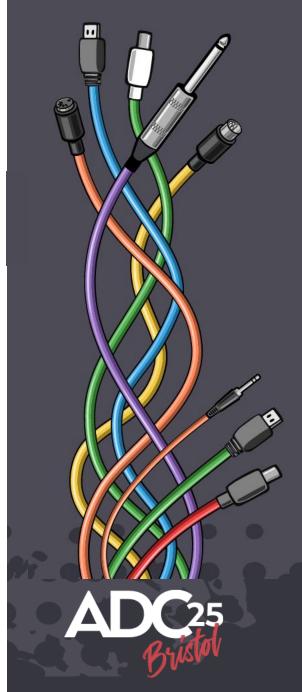


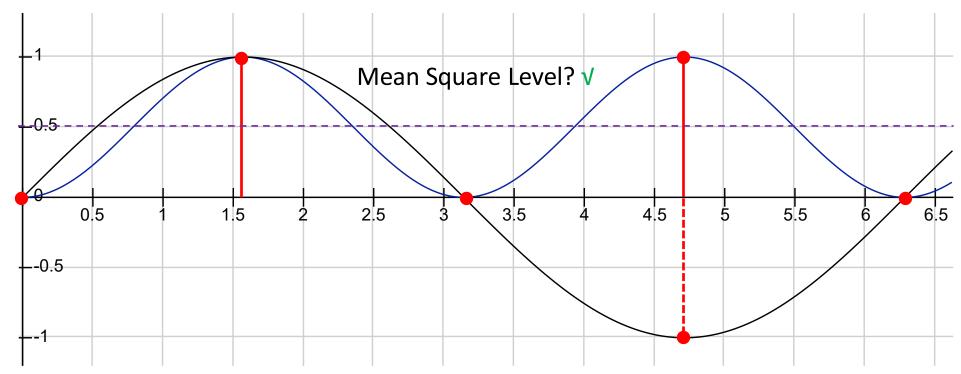
- If nonlinear operations are applied to samples e.g. (x²)
- It means that parts of the waveform are missed
 - Between the samples



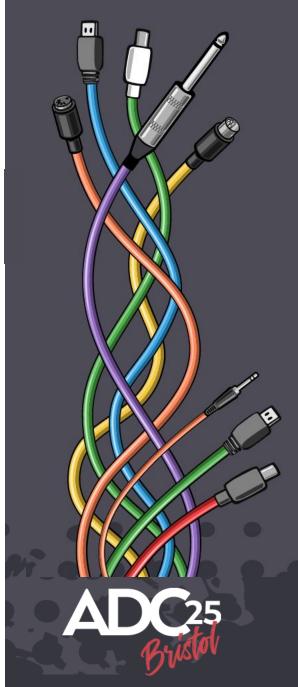


- If nonlinear operations are applied to samples e.g. (x²)
- It means that parts of the waveform are missed
 - Between the samples
 - For example, the zeros in this case
 - This means even RMS won't work properly!

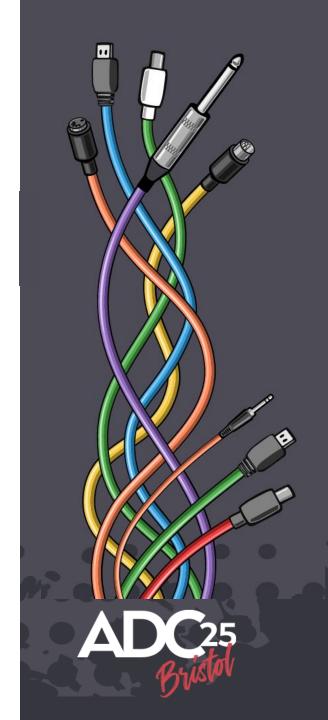


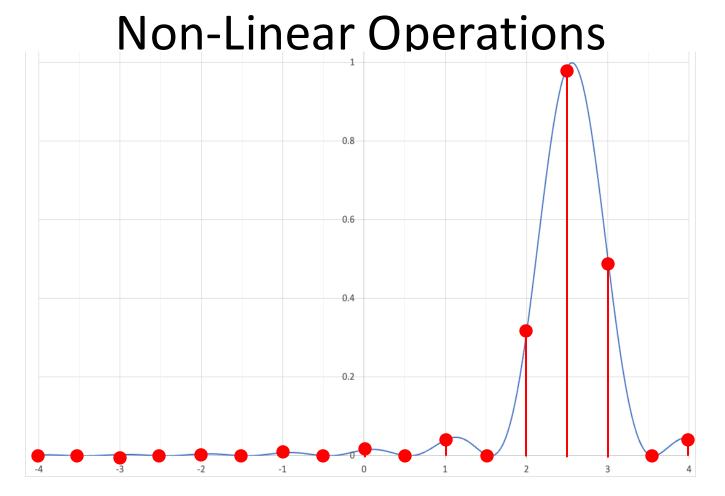


- If nonlinear operations are applied to samples e.g. (x^2)
- It means that parts of the waveform are missed
 - Between the samples
- We need to oversample by at least factor of 2 to get the correct RMS for $F_{\rm s}/2$

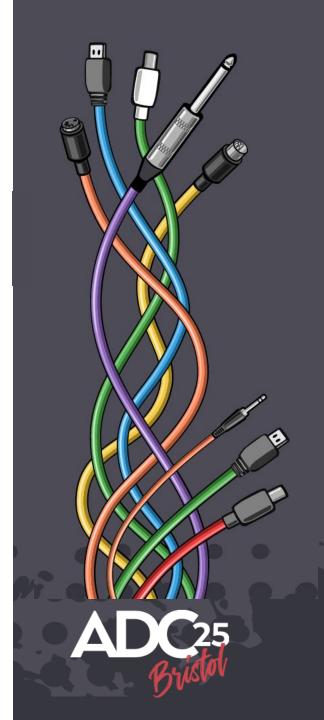


- If nonlinear operations are applied to samples e.g. (x²)
- It means that parts of the waveform are missed
 - Between the samples
 - For example, the zeros in this case
 - Can be significant when finding the magnitude of a Fourier transform



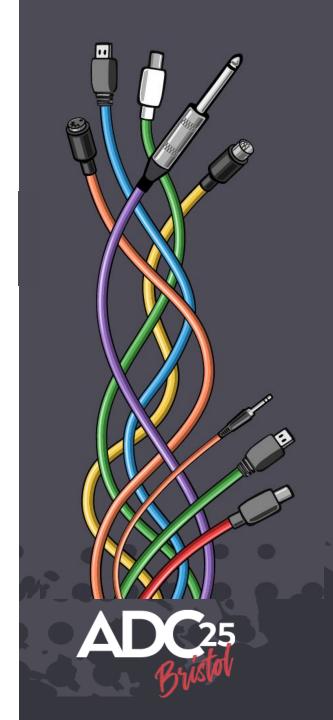


- If nonlinear operations are applied to samples e.g. (x²)
- It means that parts of the waveform are missed
 - Between the frequency samples
 - Can be significant when finding the magnitude of a Fourier transform
 - Need to increase in the frequency resolution via interpolation



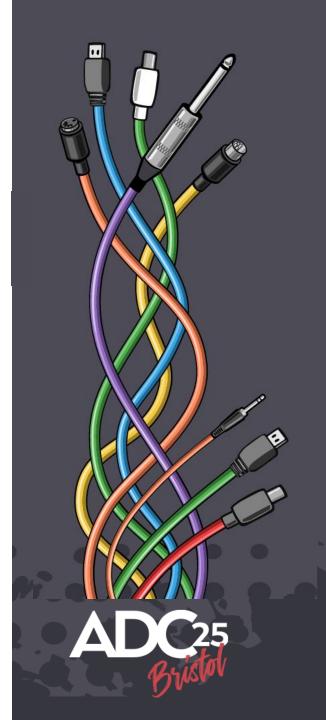
The Samples Are Not The Whole Story!

- When an audio waveform is sampled
 - The actual waveform level may not be the sample value
- Shannon-Nyquist theory is so pervasive we forget
 - There are terms and conditions attached
 - It assumes that the signal is processed in a linear fashion
 - And that there are no time varying operations
 - That is fixed filters!
- Non-linear operations are not covered
- Neither is time variation
 - Interpolation/decimation
 - Pitch shifting
 - Adaptive filtering

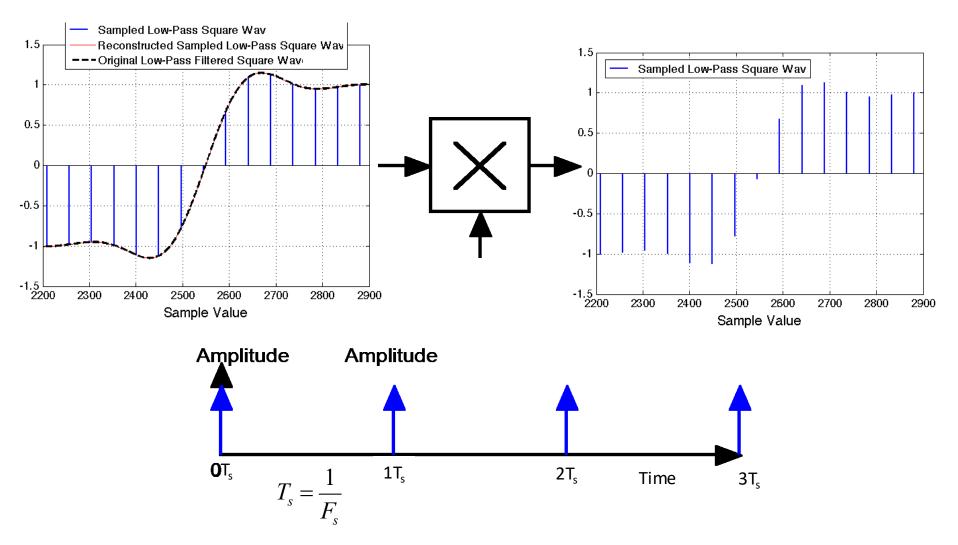


Structure

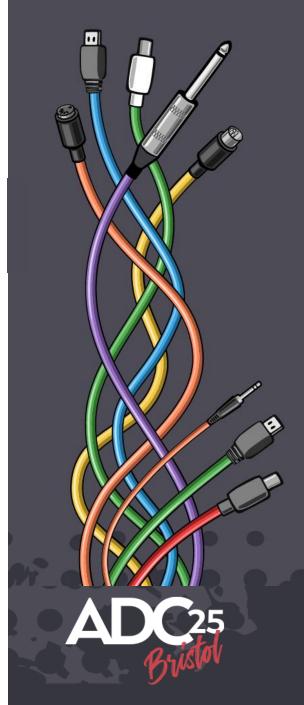
- Why does this happen in sampled signals?
- How do we get the original waveform back?
- An example
 - Where the difference between analogue and sampled waveforms matter
- Oversampling as a solution
- Quadratic interpolation as a solution
- β-Spline interpolation as a solution

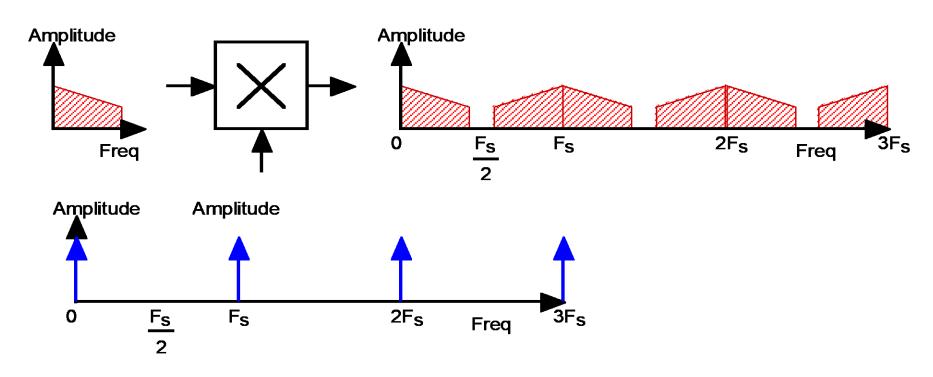


Why Does This Happen? Sampling In Time

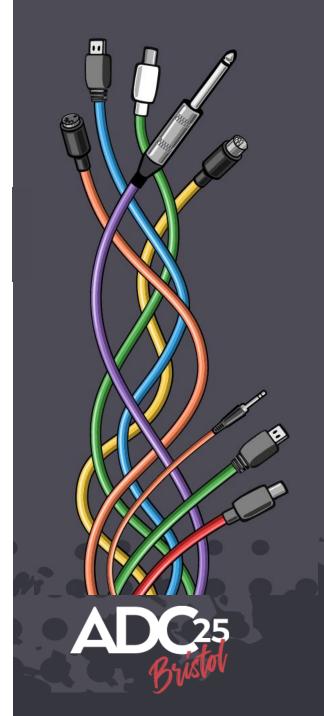


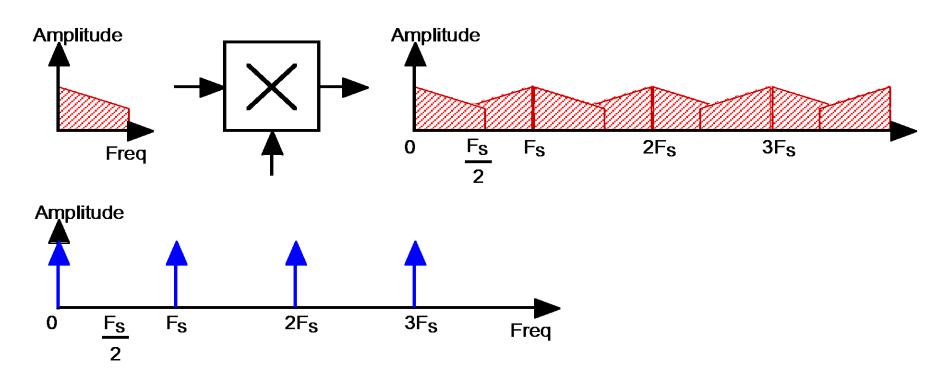
The analogue signal is sampled at discrete time intervals



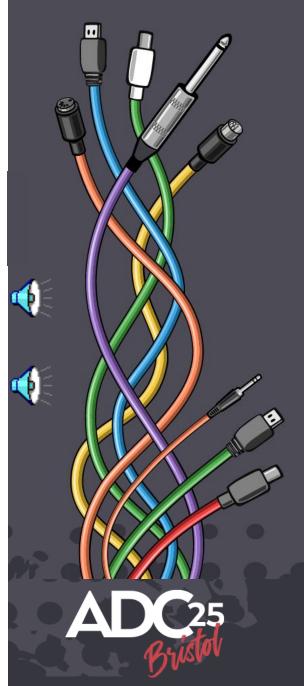


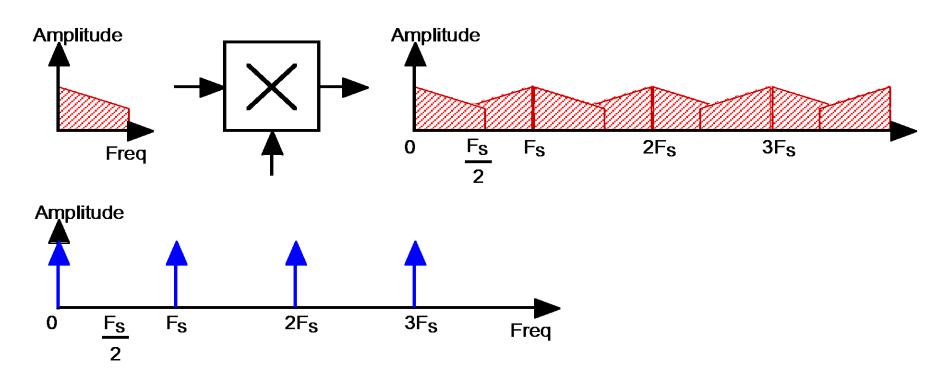
- This is like double sideband supressed carrier modulation
- On an infinite comb of carriers
 - Baseband translated to all these carrier frequencies
 - The infinite numbers of replicants is why the sample amplitudes
 - Can be different from the waveform value



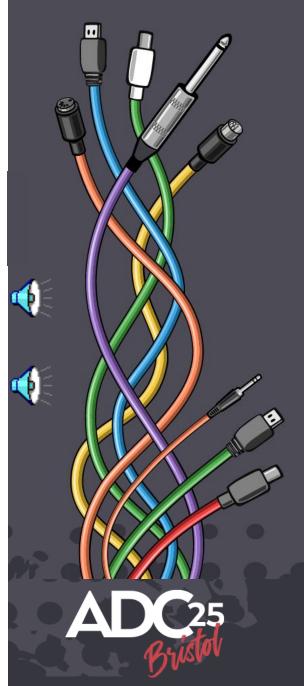


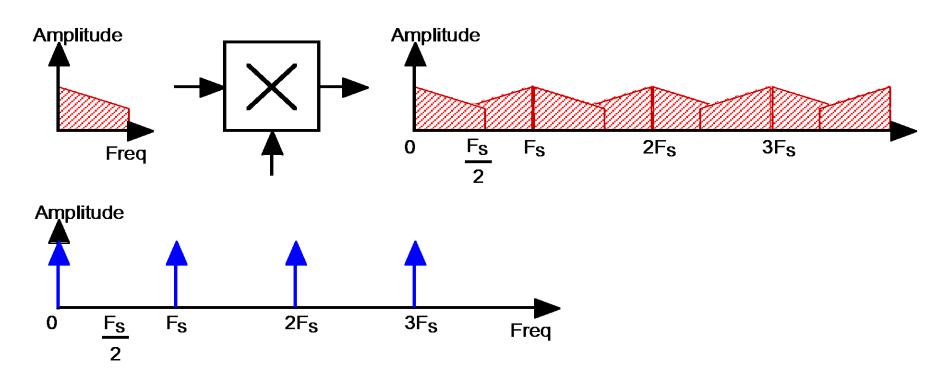
- Must have at least 2xBandwidth.
 - Less than this means the bands overlap
 - And it is impossible to recover the original waveform
 - This is called aliasing.



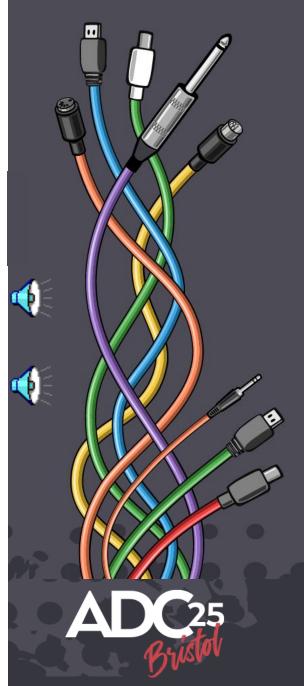


- Must have at least 2xBandwidth.
 - Less than this means the bands overlap
 - And it is impossible to recover the original waveform
 - This is called aliasing.

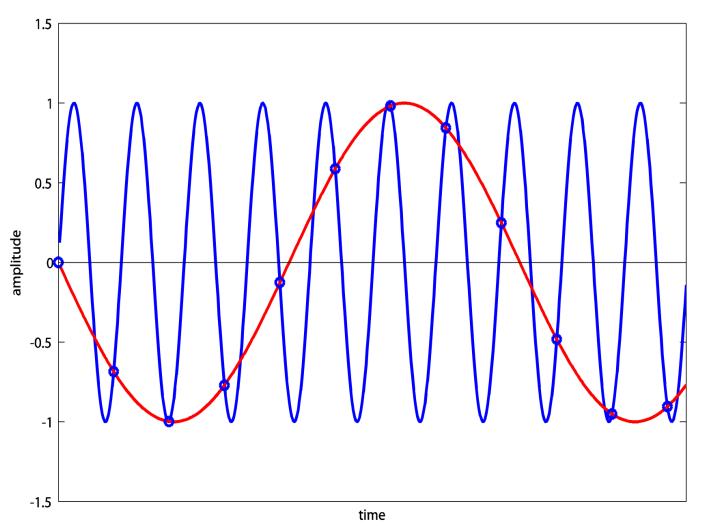




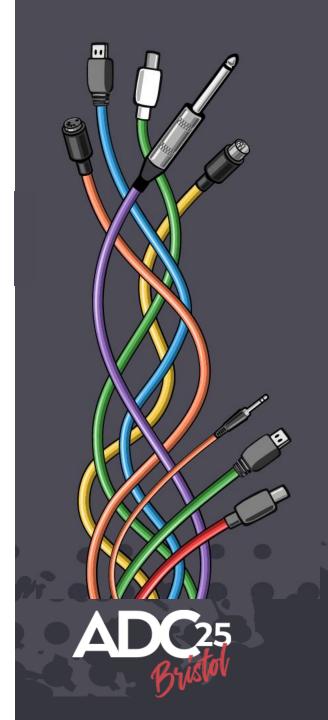
- Must have at least 2xBandwidth.
 - Less than this means the bands overlap
 - And it is impossible to recover the original waveform
 - This is called aliasing.



Sampling: Time Domain Aliasing



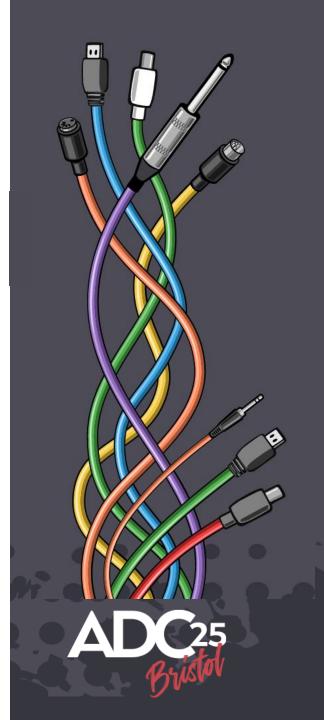
- More than one possible sine wave fits the samples
 - There are an infinite number that do!



Sampling: Frequency Domain Aliasing

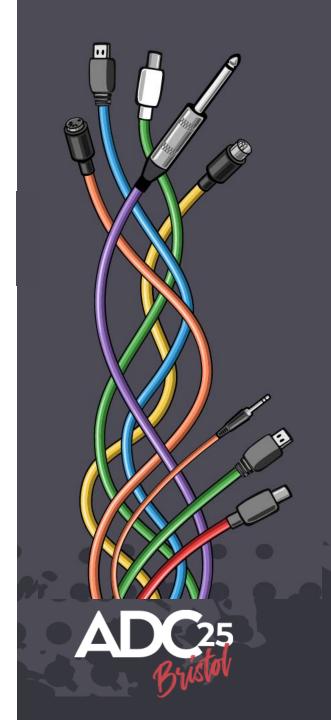
- Like having a "Through the Looking Glass" mirror.
 - At f=Fs/2,
 - And at f=0
- A sine wave walks into the mirror...

- And one walks out!
- You see an infinite number of reflected baseband spectra in two parallel mirrors



The Result of Sampling

- After sampling, the infinite frequency range of the real world.
- The infinite frequency of:
 - minus infinity
 - to plus infinity
- Collapses onto sampled frequency of:
 - minus Fs/2
 - to plus Fs/2
- Or, more conventionally, 0 Hz to Fs Hz
- Which is why the samples are not what they seem!



The Result of Sampling

0 to Fs is all you have!

- But you can only use half of it
- Any frequencies that are outside that range

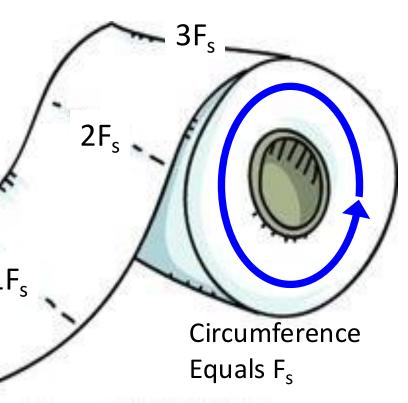
– Are "wrapped around" back into it!

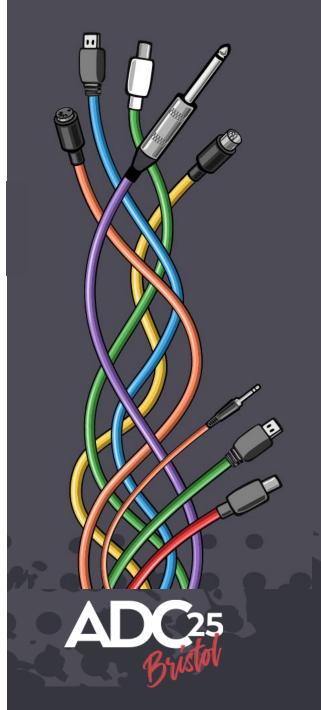
True for frequencies already present in the signal

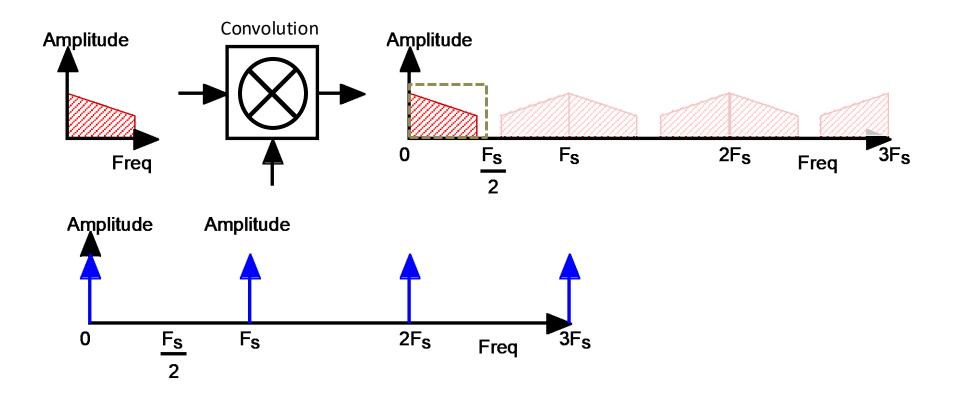
OF_s

Or ones you generate by distortion!

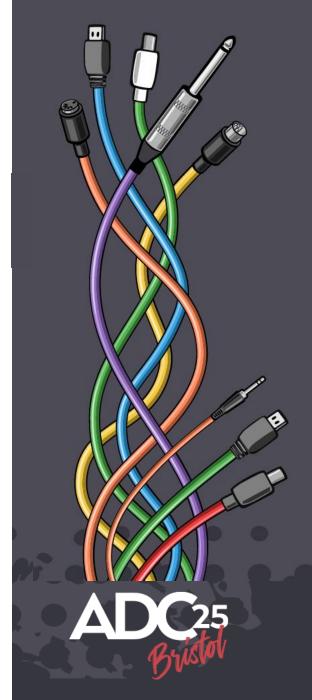
– We need to unwrap the toilet roll!

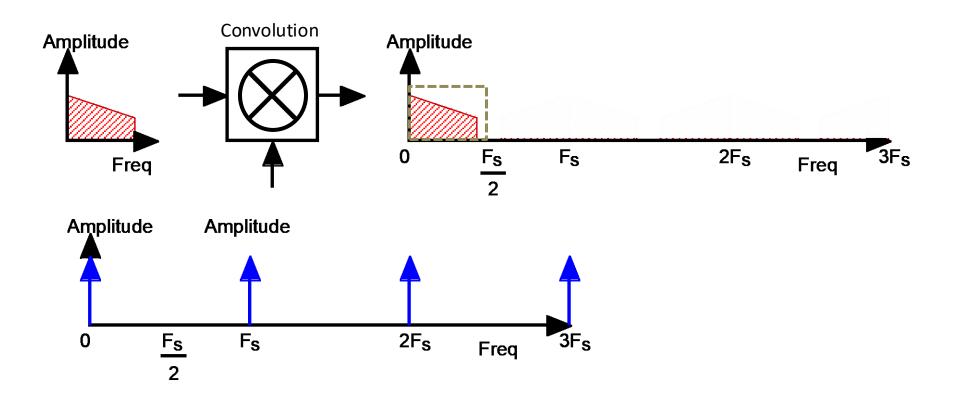




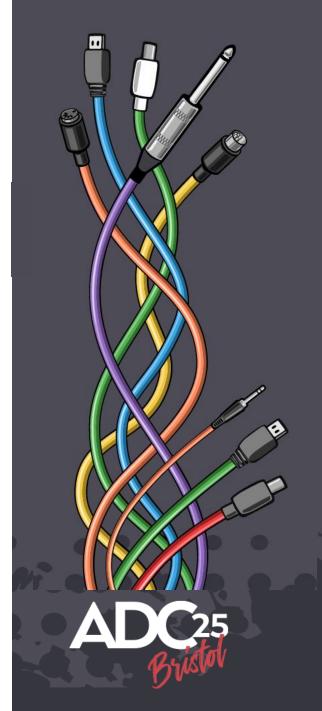


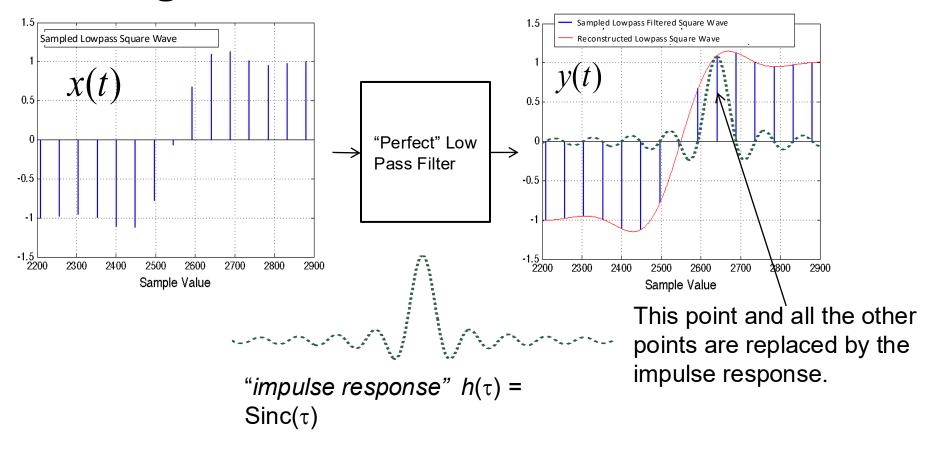
- Removing sampling aliases
 - In the frequency domain
 - The baseband can be separated from the aliases
 - By filtering with a perfect low-pass reconstruction filter



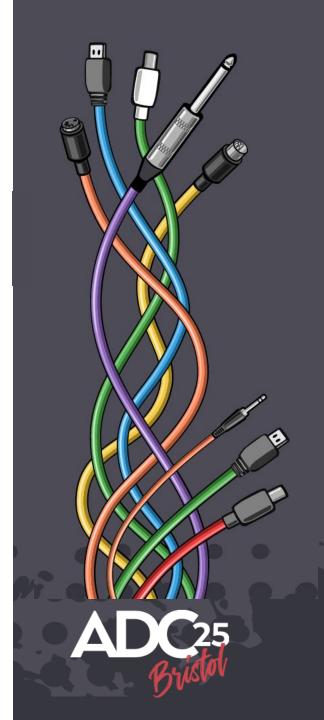


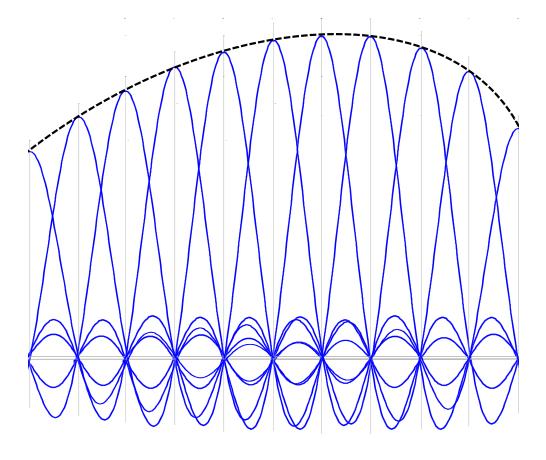
- Leaving the baseband
- Which is the original signal before sampling
- But what does this look like in the time domain?



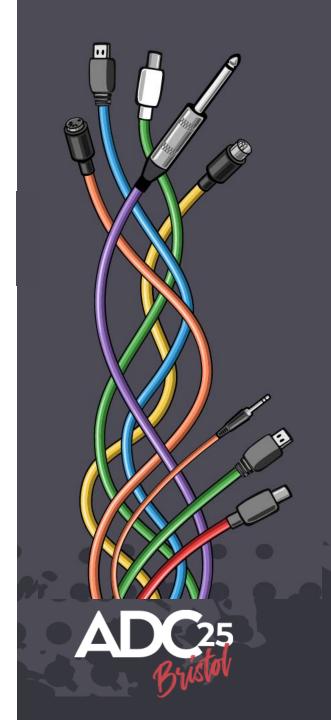


- The reconstruction filter replaces the samples with the impulse response to re-form the original input signal.
- Regular sampling has a simple, linear, reconstruction process

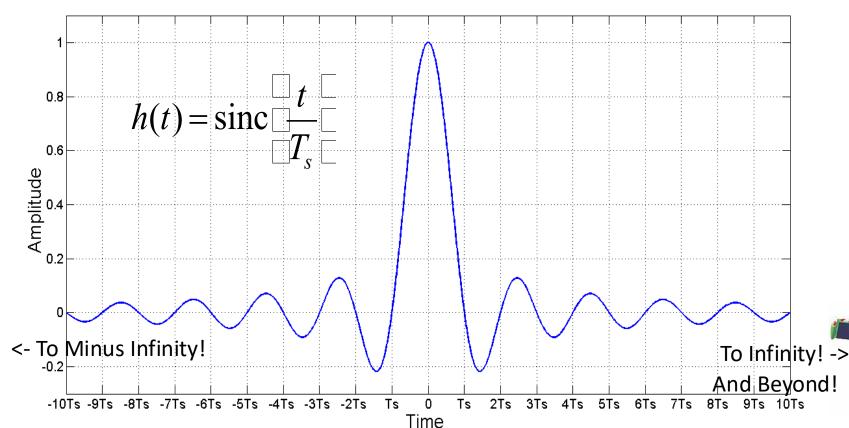




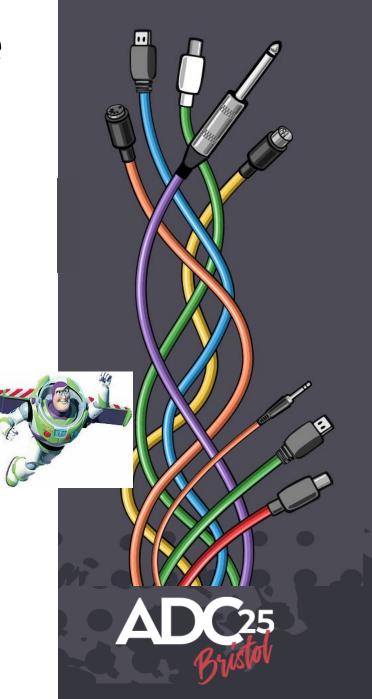
- Because the reconstruction filter has zeros at every other sampling point
 - Besides the sample point

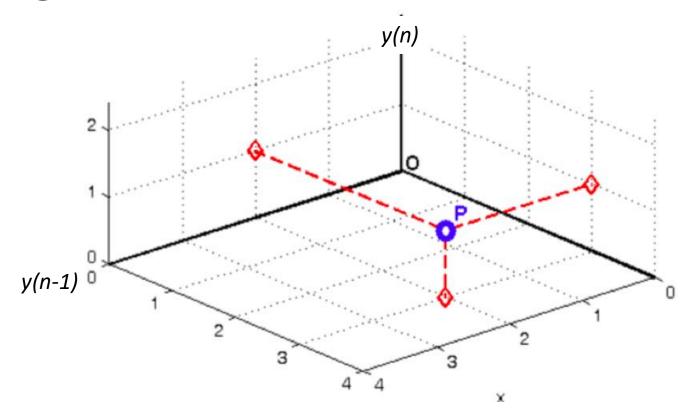


Reconstruction Filter Impulse Response

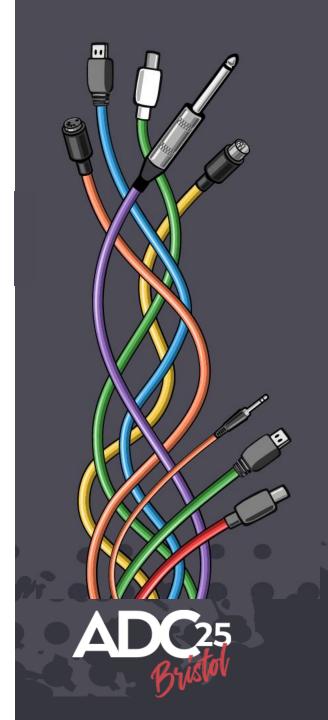


- Crosses zero at all sample times ≠ 0
- It is orthogonal to itself for samples T_s seconds apart
- This means the sample values can be seen as coordinates!
- However, the impulse response itself is infinitely long...

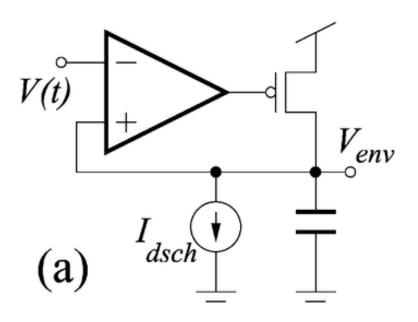




- Samples of the filtered signal are orthogonal
 - Thus, a sequence of samples specifies a unique point
 - One point to rule them all...
 - That contains ALL the information about the signal
 - Thus, one can perfectly reconstruct the original signal

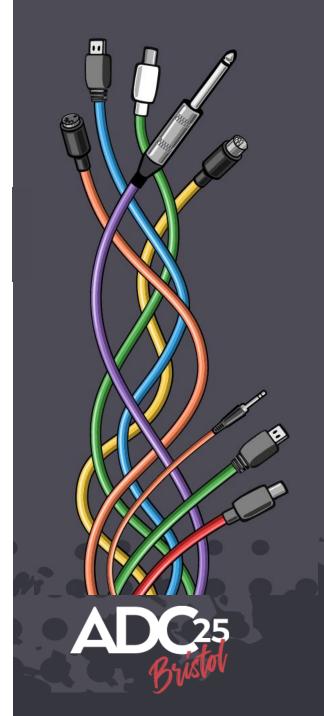


Analogue vs Software Peak Detector

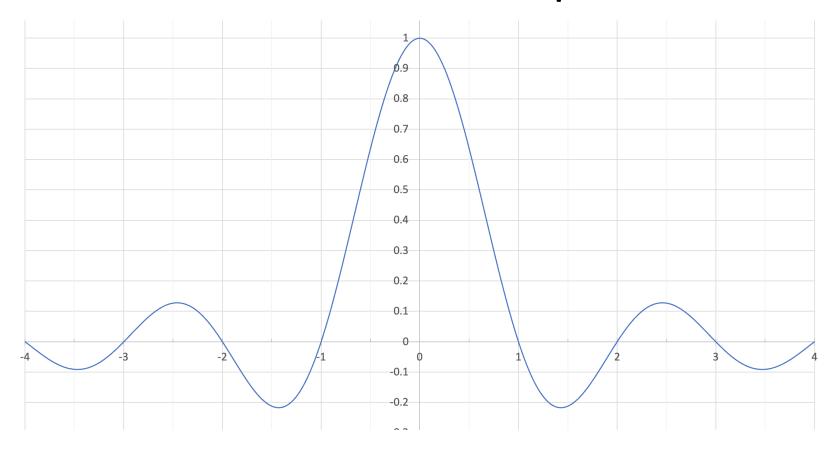


- The analogue peak detector can see the whole waveform
- The software one can only see sample values

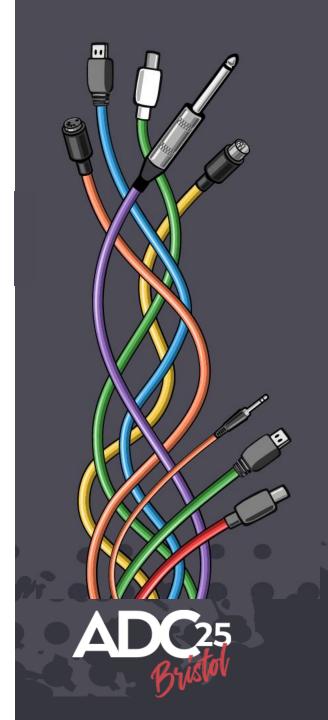
```
V_{env}
(b)
```



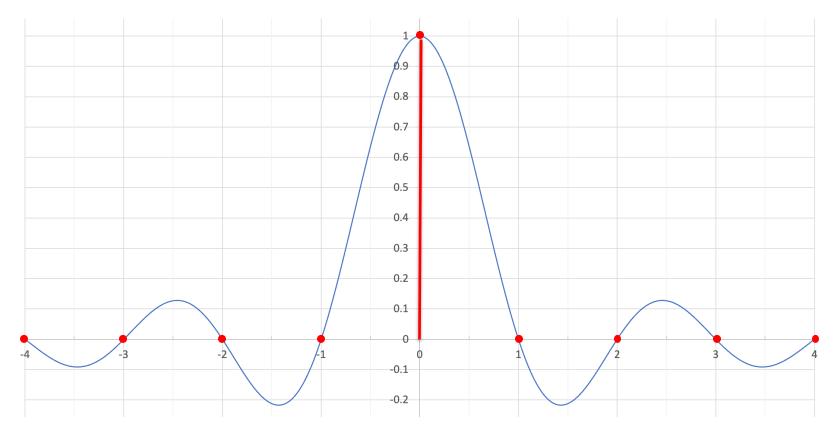
Band Limited Impulse



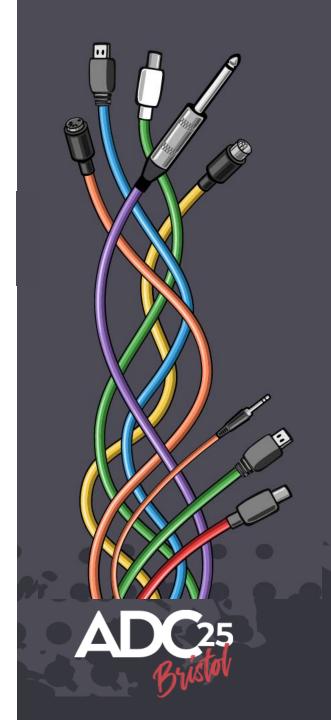
- So how bad can the error be?
- Let's look at the worst case
 - A band limited impulse



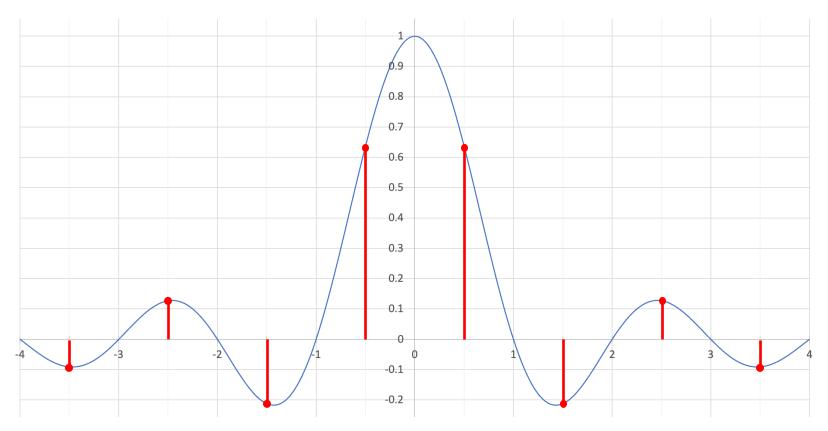
Digital Impulse Perfect Sample Phase



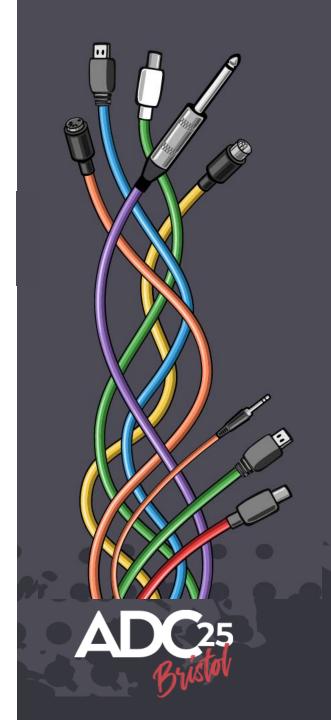
- If the impulse is perfectly sampled in the middle
- There is no error
 - The sample value is the peak of the impulse



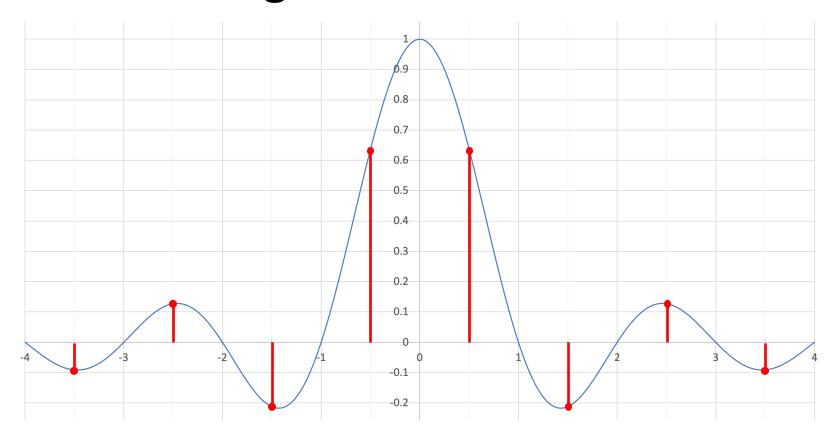
Digital Impulse Different Sample Phase



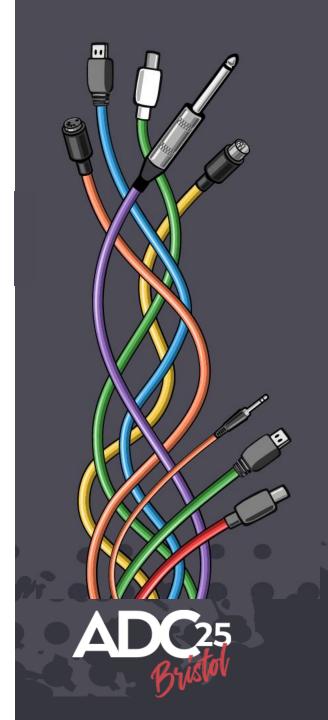
- But if the impulse is not sampled in the middle
- There will be an error
 - The sample value is not the peak value of the impulse



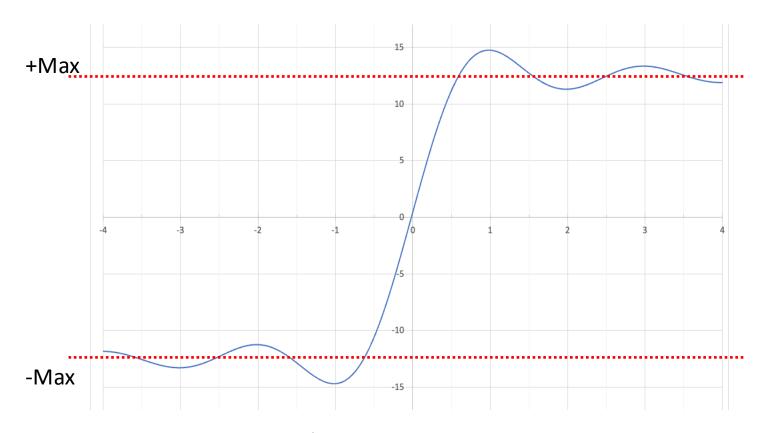
Worst Digital Peak Detector Error



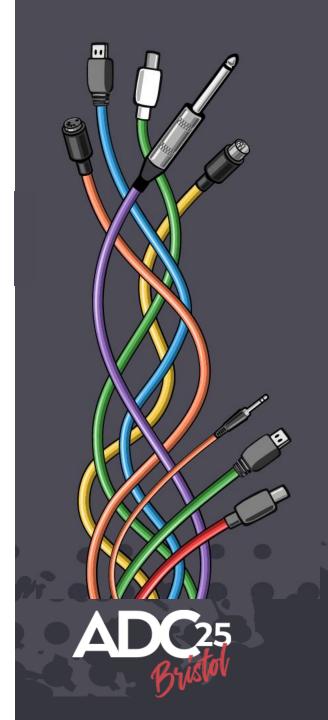
- How bad can it be?
 - Pretty bad it underestimates the peak 0.64 instead of 1
 - -3.9dB of error!



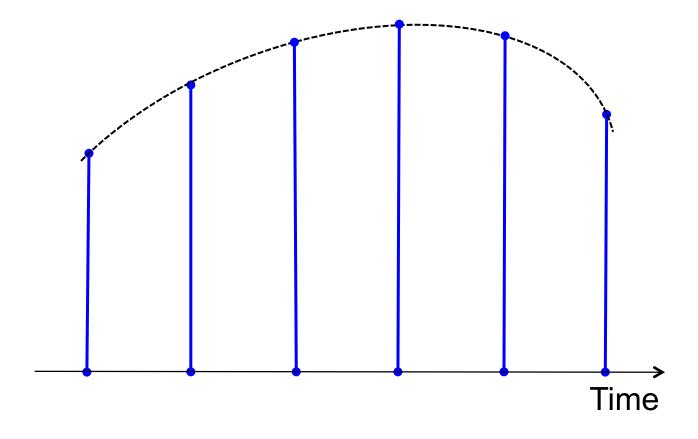
Why Values Between The Samples Matter!



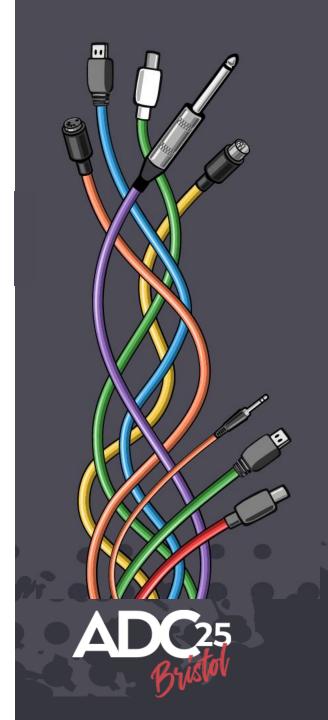
- Setting the maximum D/A output to the supply voltage
- Results in clipping downstream due to the waveform value between the samples
- Overshoot is approximately 1.5dB



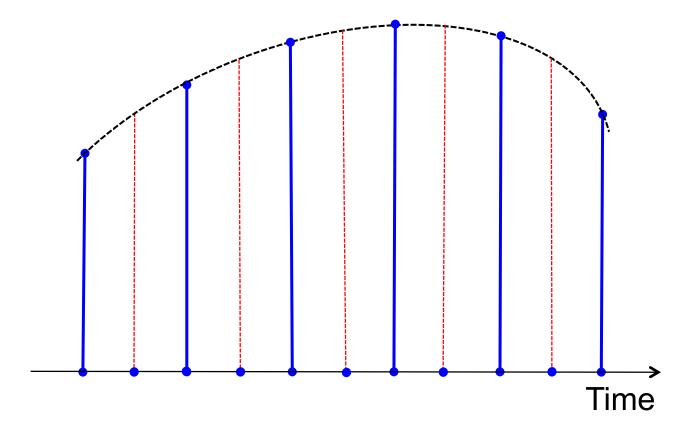
Estimating The Analogue Waveform



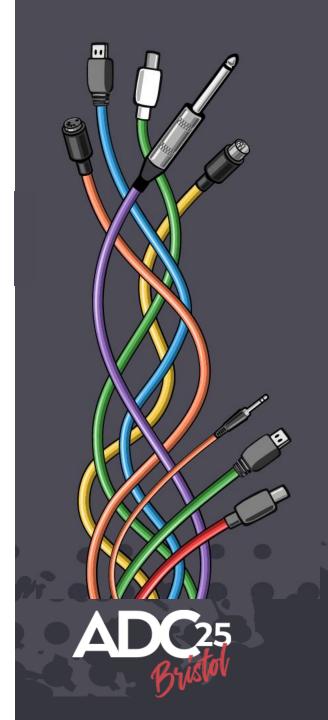
One way is by increasing the sample rate



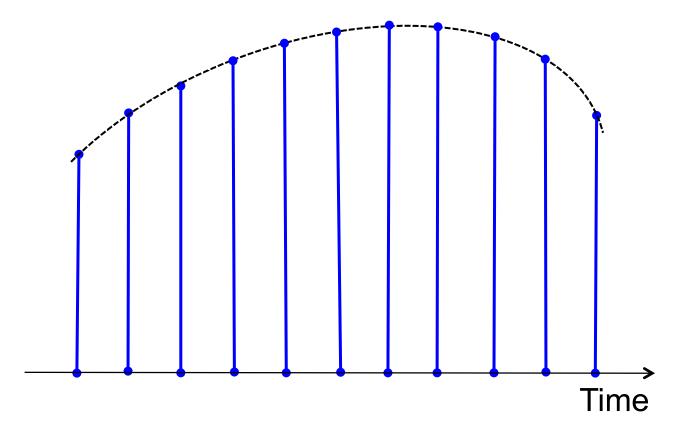
Increasing The Sample Rate



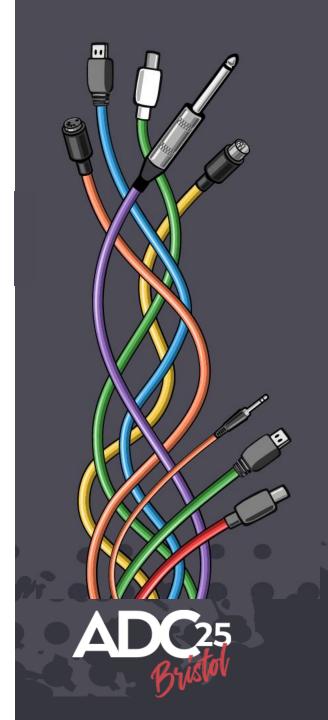
- Insert zeros between samples
- And then filter to reconstruct the in-between samples



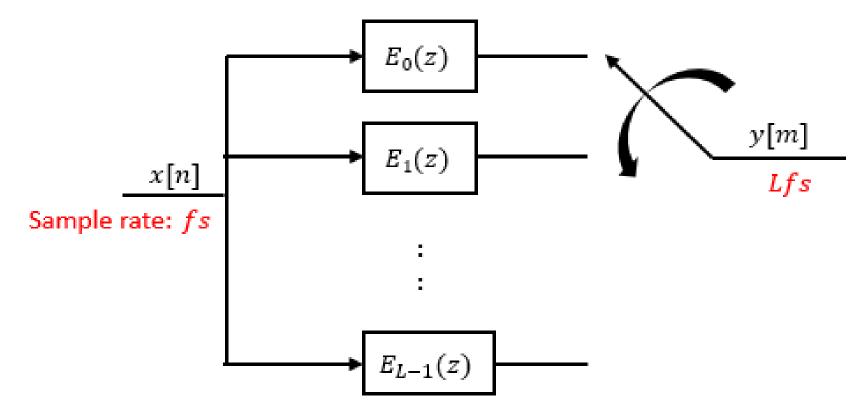
Estimating The Analogue Waveform



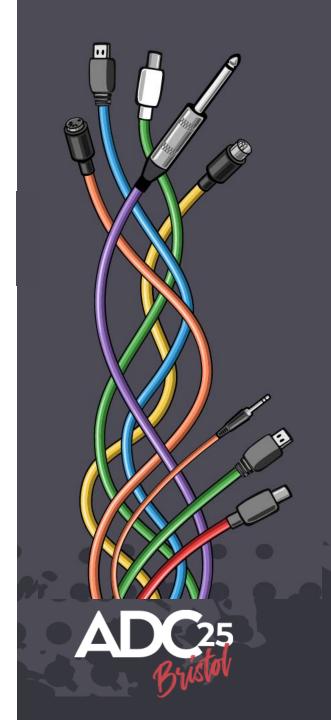
- 4 times up-sampling typically used
 - For Example, ITU BS 1770-4 (Loudness meter)
 - But it introduces delay (6 samples)
 - And computation 48 multiply adds



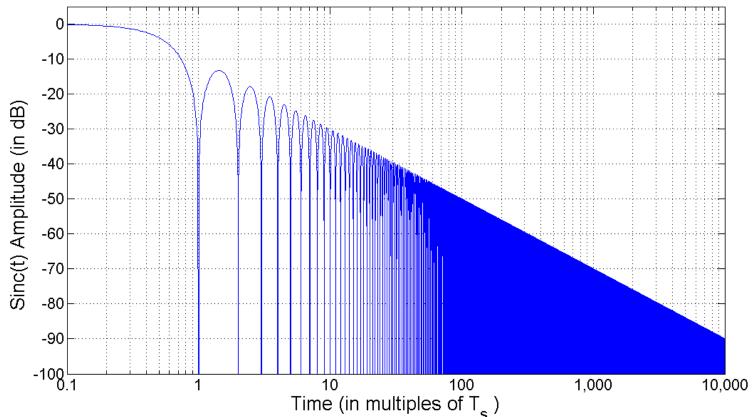
Polyphase Interpolation By L



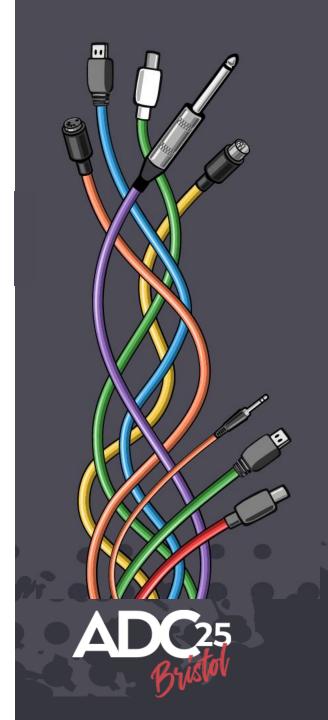
- Same input sample is fed to L low pass filters
 - Each calculates one intermediate sample position
 - By sub-sampling the Sinc coefficients at the higher sample rate
- The outputs are successively sampled
- To give L times interpolated output



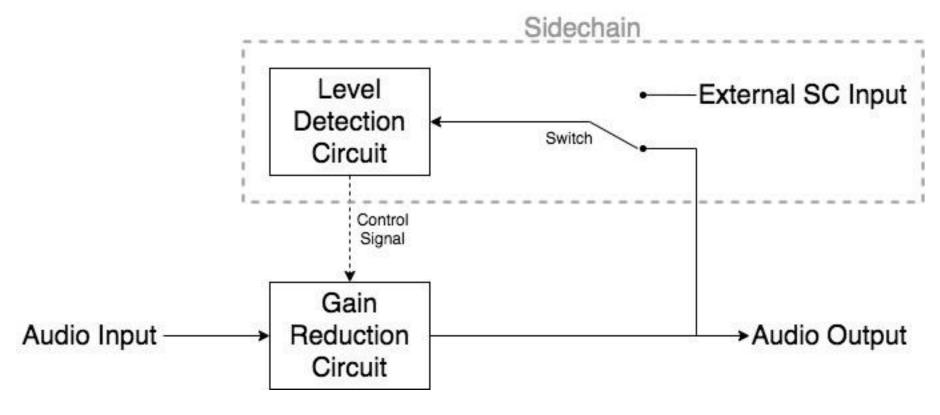
What Happens When You Limit The Length?



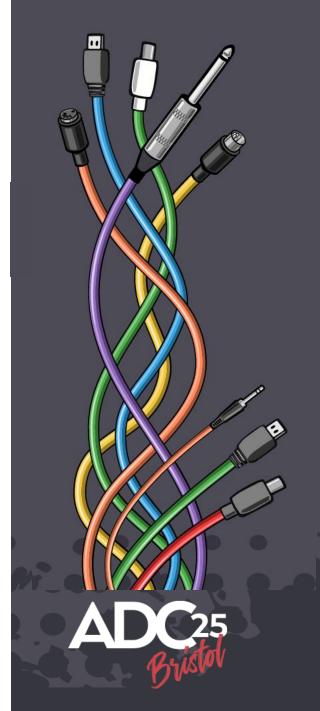
- The longer the impulse the lower the estimation errors
 - But Sinc(t) decays very slowly ≈1/t)
 - So very long filters are required
- Problem with both delay and computation



The Need For Low Delay

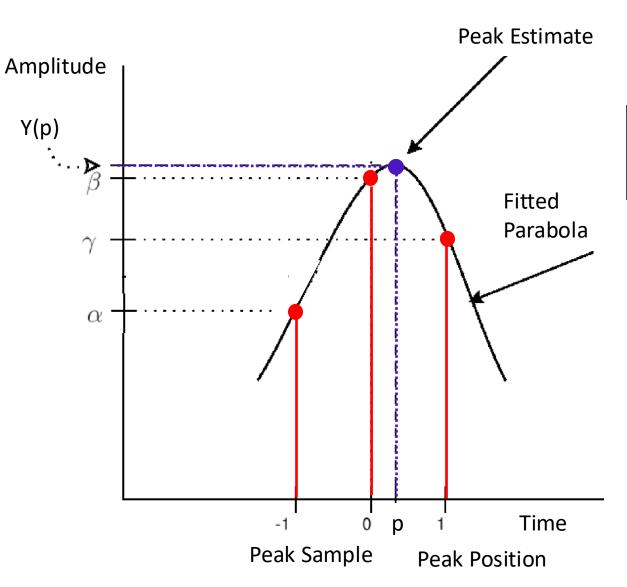


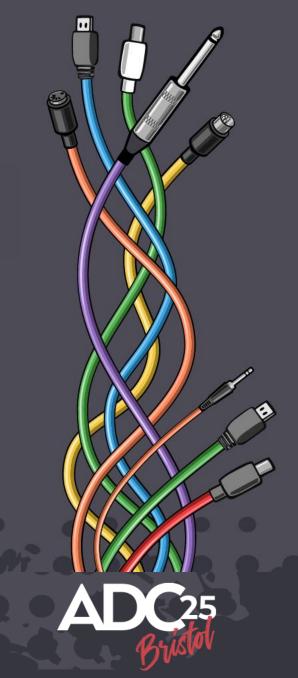
- Feedback Limiters/Compressors need a low delay level detection method
- Low delay can have lower computation



Alternative 1: Quadratic Interpolation

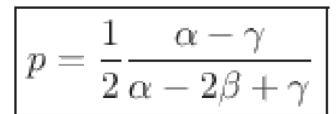
- Use 3 adjacent samples
- Construct a parabola going through them
- Use the it to calculate:
 - 'p' the peak position
 - 'Y(p)' the peak height





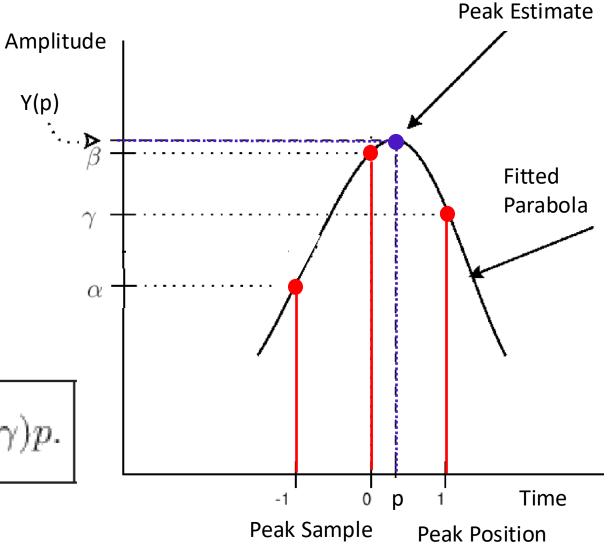
Alternative 1: Quadratic Interpolation

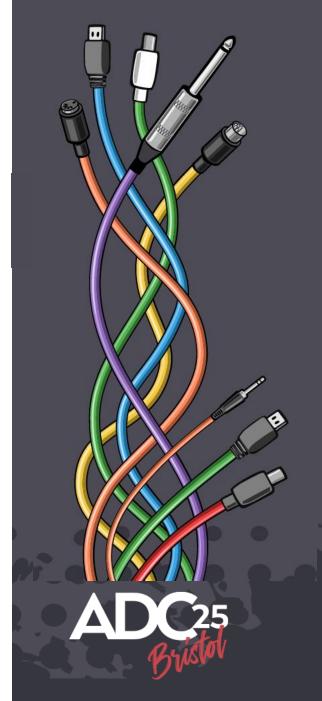
Y(p)



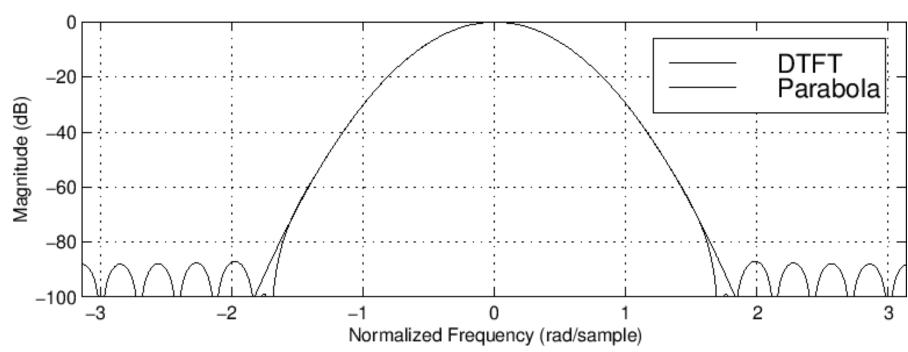
$$\in [-1/2, 1/2]$$

$$y(p) = \beta - \frac{1}{4}(\alpha - \gamma)p.$$

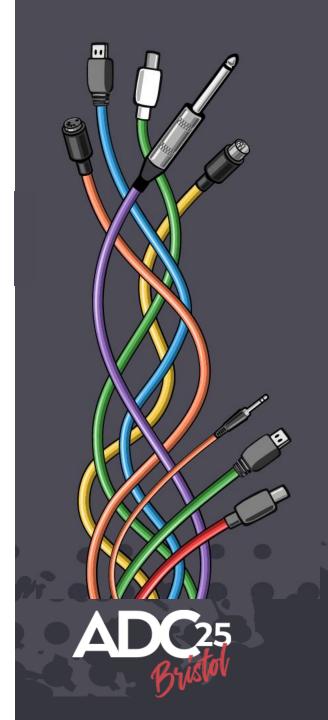




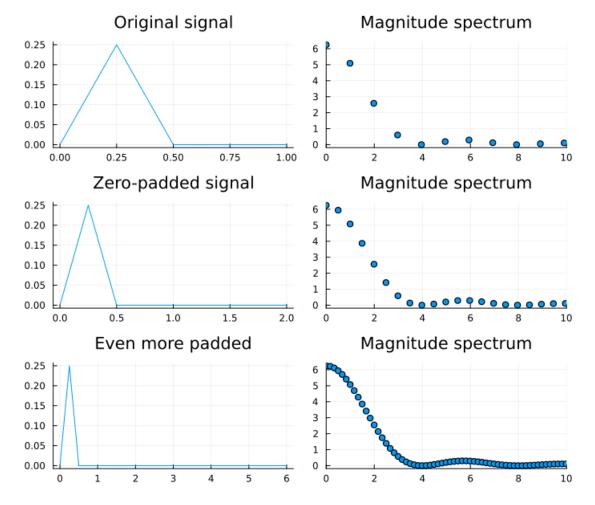
Quadratic Interpolation: Frequency Peaks



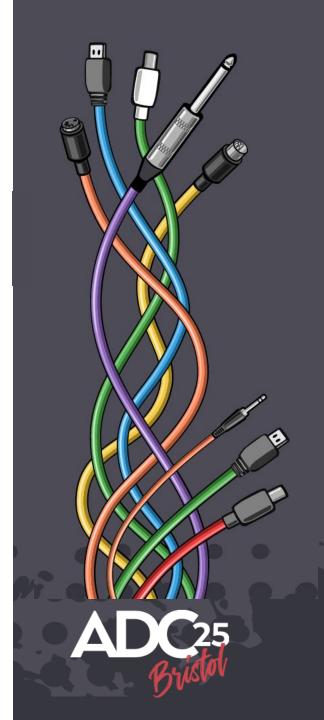
- Parabolic interpolation can be used for frequency domain peaks
 - Use Gaussian Window
 - Note can use Hamming trick to limit window length
 - Add 9% step, to cancel first bin



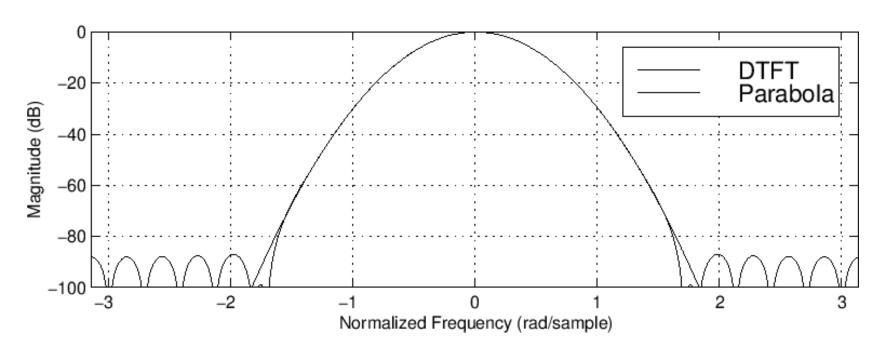
Quadratic Interpolation: Frequency Peaks



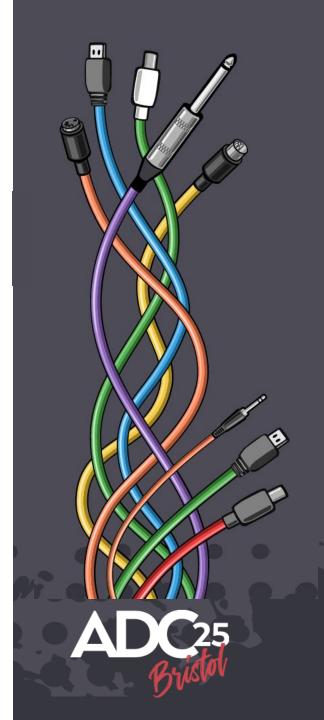
- Add zeros to interpolate the spectrum
 - At least 2 times
 - https://courses.grainger.illinois.edu/bioe205/sp2023/lectures/lec09/



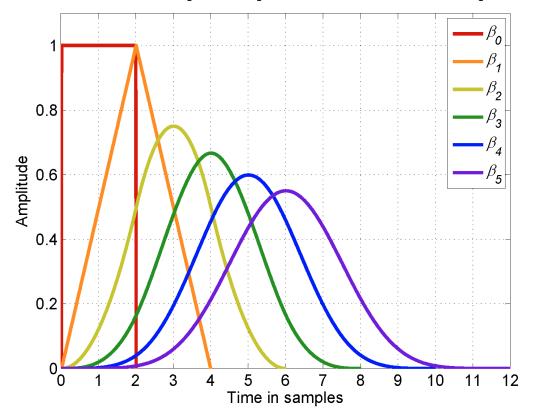
Quadratic Interpolation: Frequency Peaks



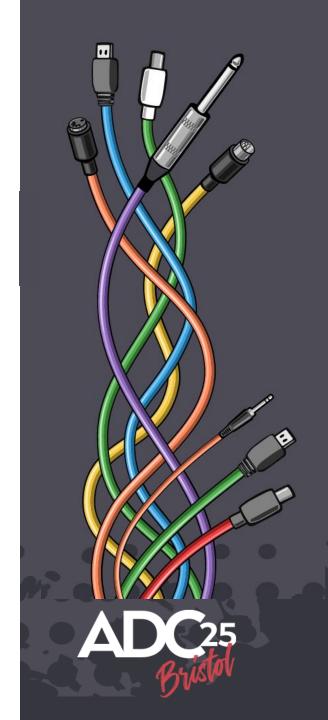
- Parabolic interpolation can be used for frequency domain peaks
 - Use Parabolic interpolation on the log-magnitude result
 - Because the lobes shape parabolic at the top
 - From Julius Smith of CCRMA



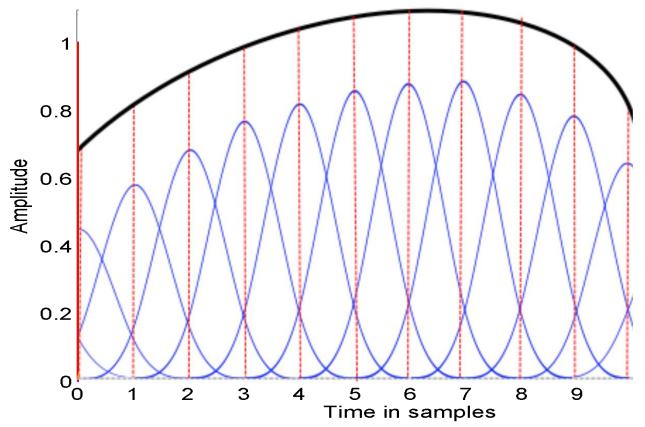
Alternative 2: β-Spline Interpolation



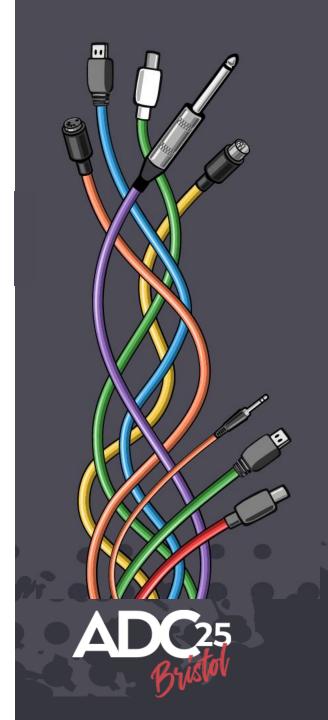
- They are formed by successively convolving the
 - Zeroth order spline, a simple rectangle of width one, β_0
- To yield the higher order β_n splines
 - B₁ is equivalent to linear interpolation
- They have the advantage of a finite time extent, not infinity!

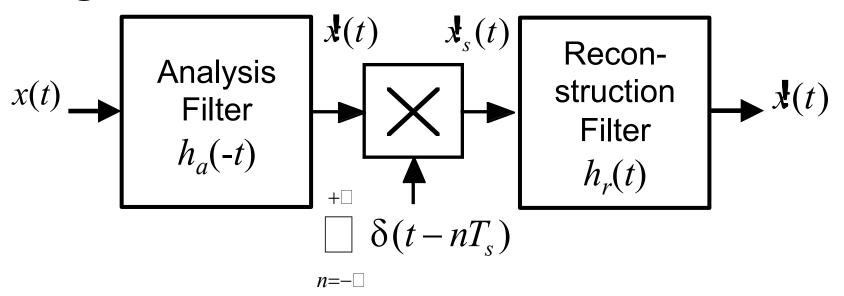


Alternative 2: β-Spline Interpolation



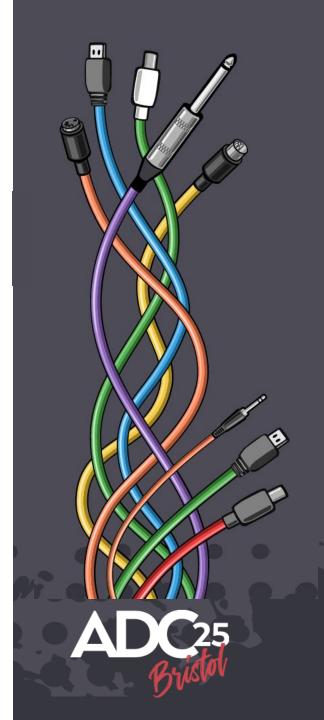
- Unfortunately, the splines overlap other samples
 - They are not independent
- So, you can't use the sample values directly
 - Because they interact.
- Usually requires a matrix inversion per output point

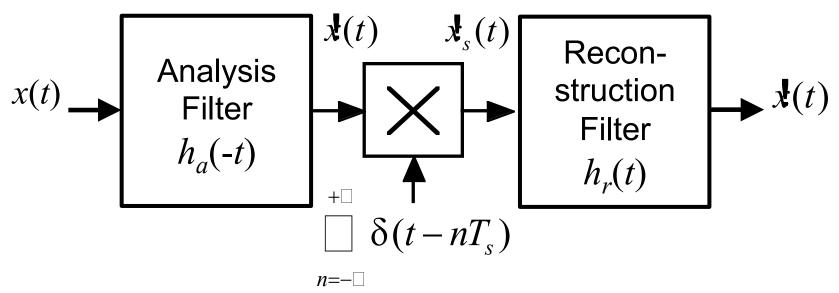




- Unser showed you can replace the matrix inversion by a filter.
 - With a transfer function H(z) of:

$$H(z) = \frac{6}{z + 6 + z^{-1}}$$

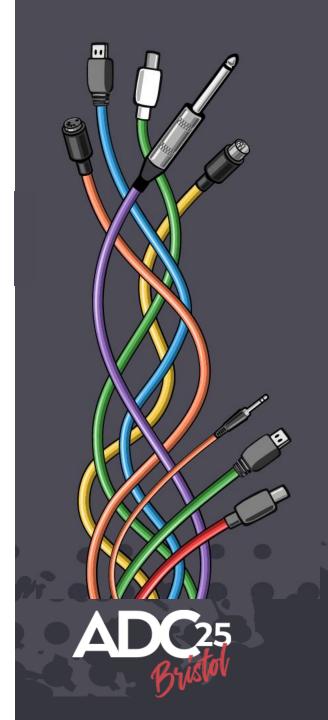


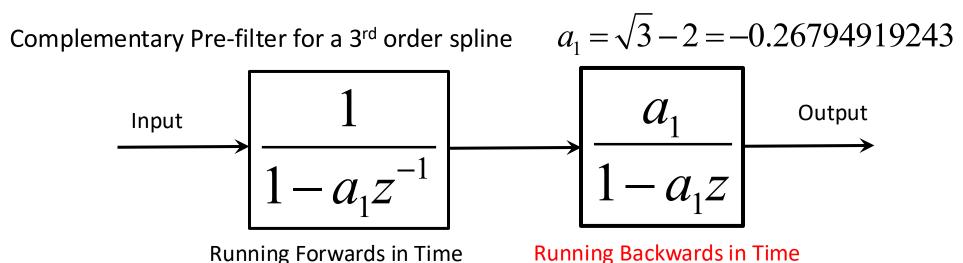


- Unser showed you can replace the matrix inversion by a filter.
 - With a transfer function H(z) of:

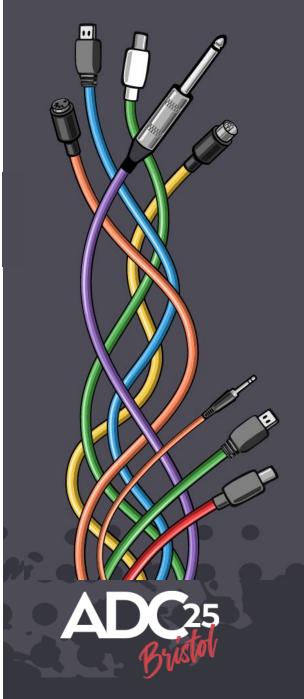
$$H(z) = \frac{6}{(z)+6+z^{-1}}$$

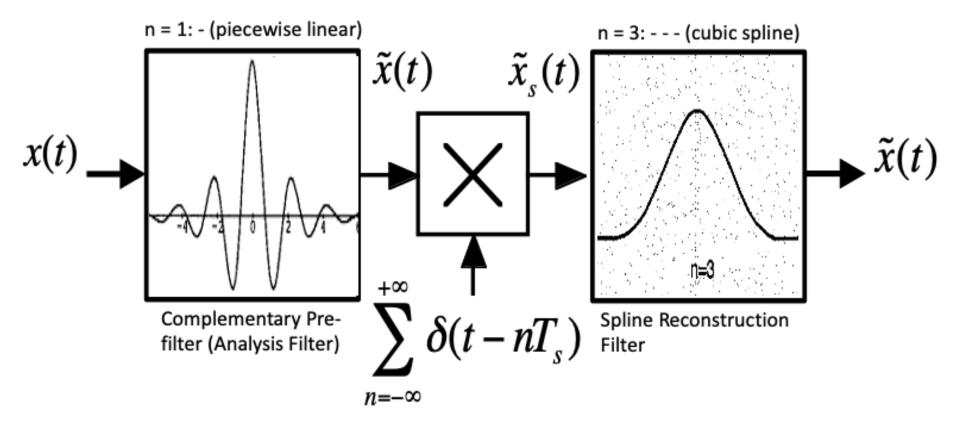
- Unfortunately, it's non-causal!
 - (Pre-cognitive processing anyone?)



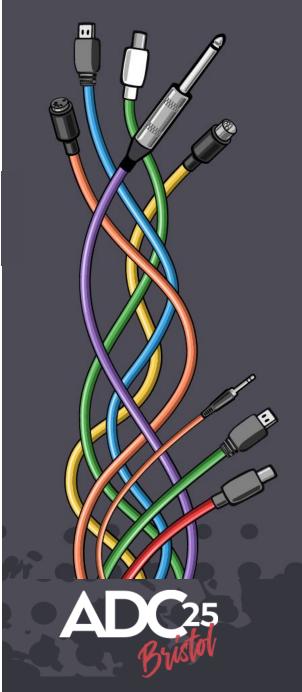


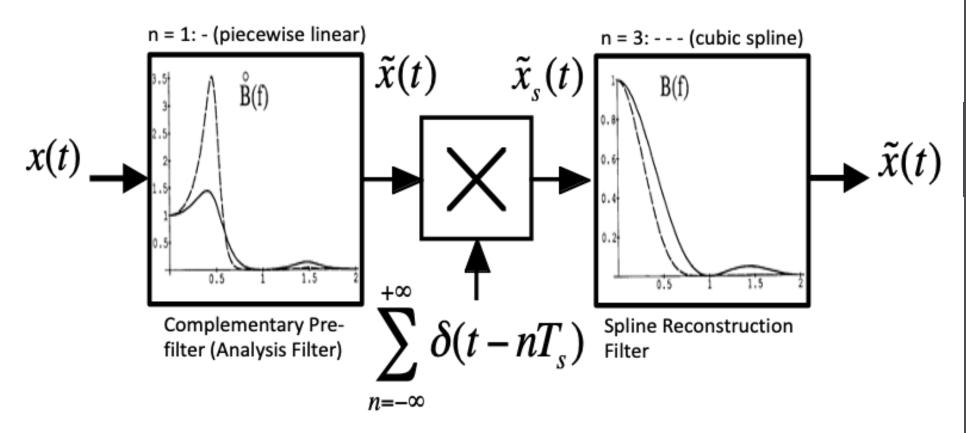
- Fortunately, this can be realised using two IIR filters.
 - One running forwards in time
 - And one running backwards in time!
- Tricky to do in real time
 - But ok for mastering and pictures.
- In practice one must make a windowed FIR equivalent
 - Shorter than Sinc(t) because it decays faster (exponentially vs 1/t).



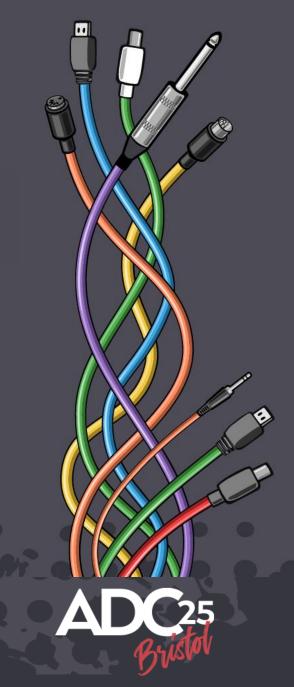


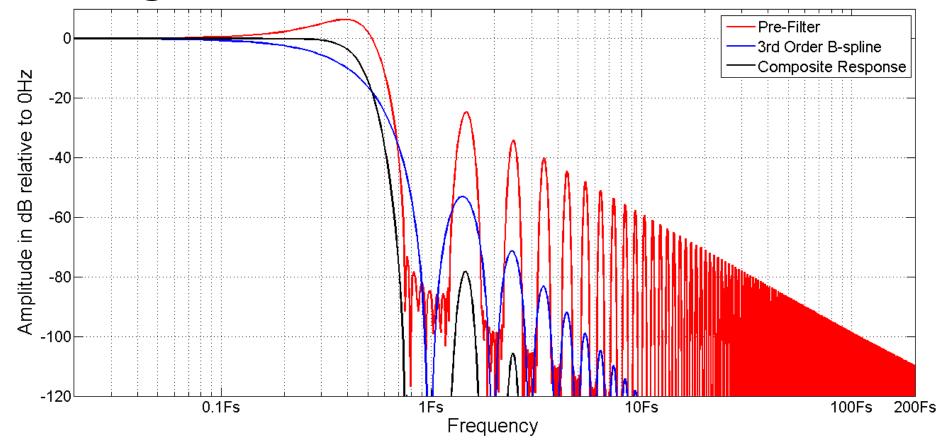
- This is what the filters look like in the time domain, for n=3
 - Reconstruction filter has a finite impulse response.
 - Pre-filter has an infinite impulse response so is truncated (windowed)



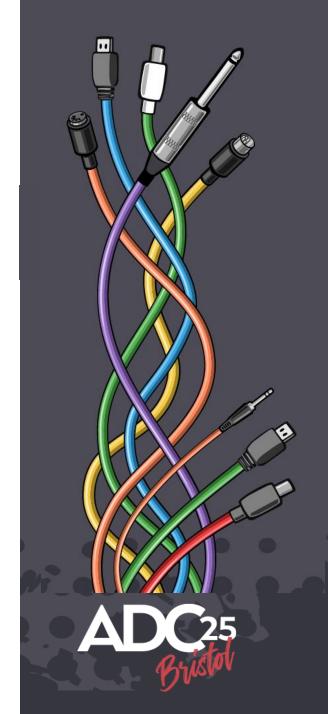


- This is what the filters look like in the Frequency domain, for n=3
 - Reconstruction filter has a casual roll-off response.
 - Pre-filter has a peaked response



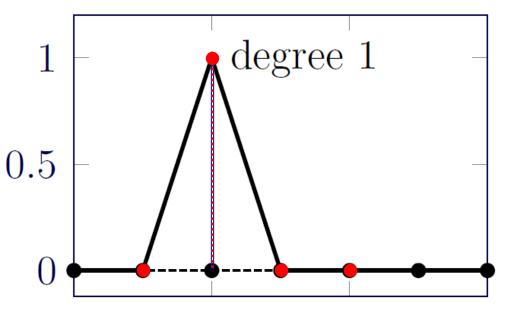


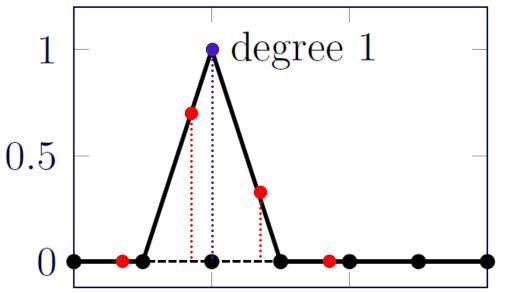
- This is what the filters look like in the Frequency domain, for n=3
 - Spline reconstruction filter has a casual roll-off response.
 - Pre-filter has a peaked response

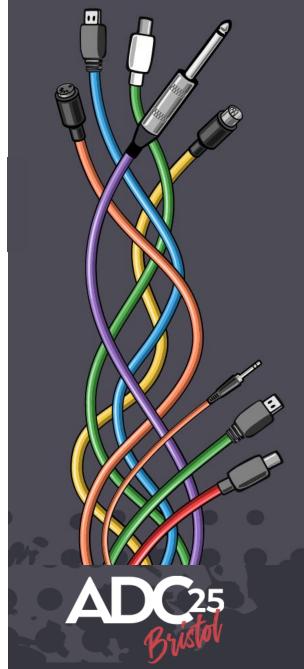


Filter Based β₁-Spline Interpolation

- When the β_1 spline is on a sample point
 - It outputs that sample value
- When the β_1 spline is between two sample points
 - It outputs a weighted sum of the two adjacent sample values
- A 2-tap FIR filter with dynamically varying coefficients
 - Determined by the spline values of the input samples
 - Linear interpolation

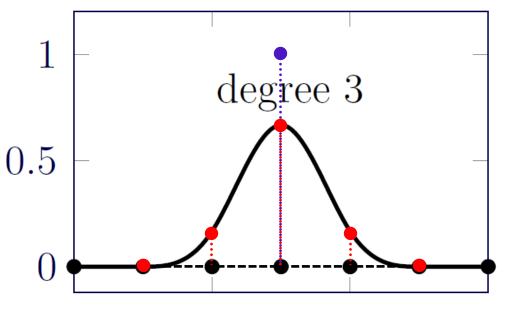


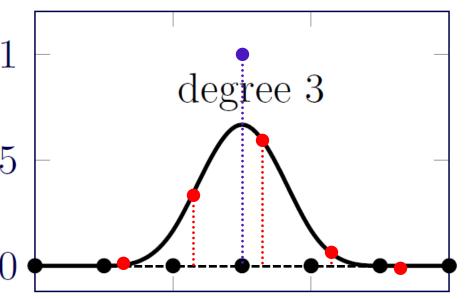


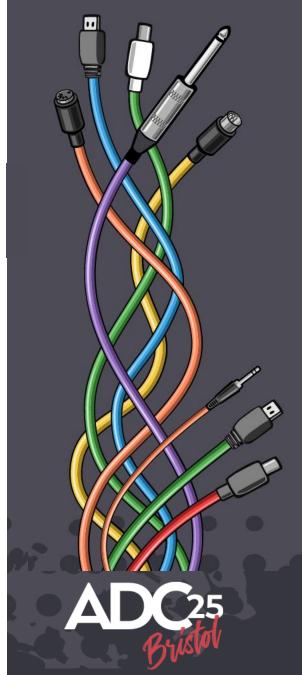


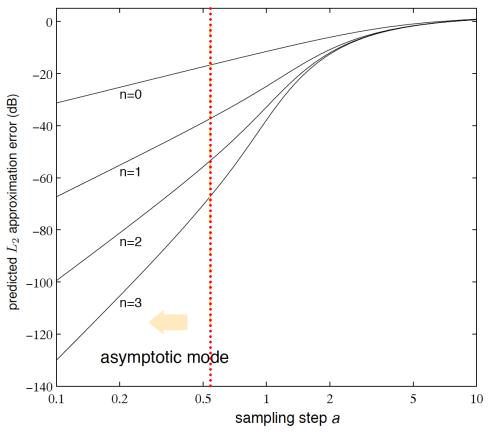
Filter Based β_3 -Spline Interpolation

- When the β_3 spline is on a sample point
 - It outputs that sample value
- When the β_3 spline is between two sample points
 - It outputs a weighted sum of the four adjacent sample values
- A 4-tap FIR filter with dynamically varying coefficients
 - Determined by the spline 0.5 values of the input samples
 - You can calculate them

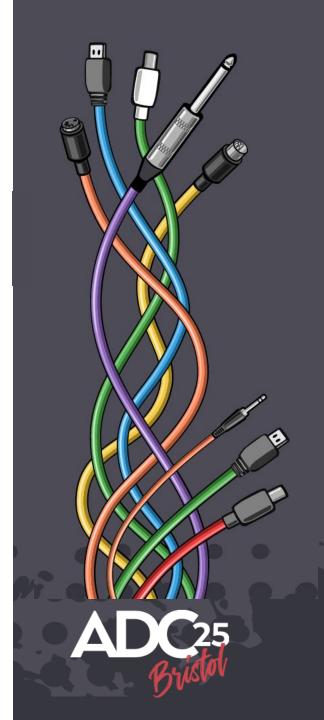






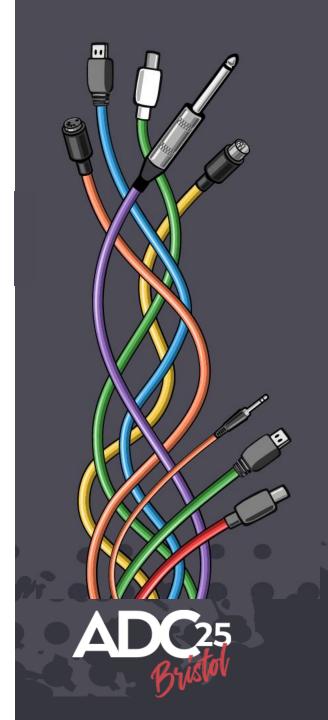


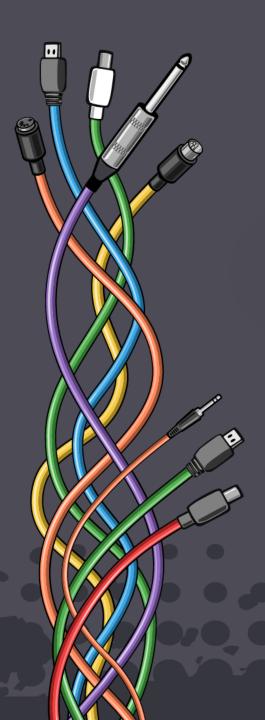
- Oversampling is probably necessary
 - Two times or greater?
 - May be provided already for 96kHz sample rate
- And/or higher order splines



Conclusion

- The ability to measure and control an audio waveform's level is an important part of many audio devices.
- However, because the audio waveform is sampled
 - The actual level may not be the sample values,
 - But instead, may be an intermediate value between the samples
 - Non-linear operations do not work as expected
 - Dynamic variation in levels are also affected
 - Especially for inter sample peaks
- Various methods have been proposed to ameliorate this
 - Up-sampling
 - Quadratic interpolation
 - $-\beta$ -Spline Interpolation
- The samples are not always what they seem!





Any Questions?

