&/ THE REAL WAVEFORM MATTERS
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What Is The Peak Value Of This Signal?

Input: signal
Output: index
peakIndex : = null;

1

peakValue :— null; 08
for index, value in signal do
if peakValue null or value > peakValue then |
peakIndex = index; 0.6 !
peakValue :— value;
end
end o
return peaklndex;
0.2

4 ! 2 l -M ! l 2 3 l

e A simplistic examination of sample values would suggest:

— Peak sample value equal to 0.7
— At sample number +37?




What Is The Peak Value Of This Signal?

e But you would be wrong!

— The peak value is actually 1!
— And occurs between two samples at position 2.6




What Is The Peak Value Error?

*
-3dB Error

* Thisis a level error of -3dB!
— That’s significant in many applications
— The time shift may also matter




Non-Linear Operations

* |f nonlinear operations are applied to samples
e.g. (x?)

* |t means that parts of the waveform are missed
— Between the samples




Non-Linear Operations

Mean Square Level? X

* |f nonlinear operations are applied to samples e.g. (x?)

* It means that parts of the waveform are missed
— Between the samples
— For example, the zeros in this case
— This means even RMS won’t work properly!




Non-Linear Operations

Mean Square Level? v

* |f nonlinear operations are applied to samples e.g. (x?)
* It means that parts of the waveform are missed

— Between the samples
 We need to oversample by at least factor of 2 to get
the correct RMS for F./2




Non-Linear Operations
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* If nonlinear operations are applied to samples e.g. (x?)

* |t means that parts of the waveform are missed
— Between the samples
— For example, the zeros in this case
— Can be significant when finding the magnitude of a Fourier transform

3 4




Non-Linearl Operations
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* If nonlinear operations are applied to samples e.g. (x?)

* |t means that parts of the waveform are missed
— Between the frequency samples
— Can be significant when finding the magnitude of a Fourier transform
— Need to increase in the frequency resolution via interpolation




The Samples Are Not The Whole Story!

When an audio waveform is sampled
— The actual waveform level may not be the sample value

Shannon-Nyquist theory is so pervasive we forget

— There are terms and conditions attached

— It assumes that the signal is processed in a linear fashion
— And that there are no time varying operations

— That is fixed filters!

Non-linear operations are not covered

Neither is time variation

— Interpolation/decimation
— Pitch shifting
— Adaptive filtering




Structure

Why does this happen in sampled signals?
How do we get the original waveform back?
An example

— Where the difference between analogue and sampled
waveforms matter

Oversampling as a solution
Quadratic interpolation as a solution
B-Spline interpolation as a solution




Why Does This Happen? Sampling In Time

— Sampled Low-Pass Square Wav
1.5 ——Reconstructed Sampled Low-Pass Square Wav

===0riginal Low-Pass Filtered Square Waw

— Sampled Low-Pass Square Wav |
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* The analogue sighal is sampled at discrete time intervals




Sampling In The Frequency Domain

Amplitude Amplitude

by, ~1XI
. )

Amplitude Amplitude
0 Fs Fs 2Fg .3Fs

_ Freq
2

* This is like double sideband supressed carrier modulation

* On an infinite comb of carriers
— Baseband translated to all these carrier frequencies
— The infinite numbers of replicants is why the sample amplitudes
— Can be different from the waveform value




Sampling In The Frequency Domain

Amplitude Amplitude

by, X1
. )

| R

0 Fs Fs 2Fg 3Fs Freq

* Must have at least 2xBandwidth.
— Less than this means the bands overlap
— And it is impossible to recover the original waveform
— This is called aliasing.




Sampling In The Frequency Domain

Amplitude Amplitude

by, X1
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0 Fs Fs 2Fg 3Fs Freq

* Must have at least 2xBandwidth.
— Less than this means the bands overlap
— And it is impossible to recover the original waveform
— This is called aliasing.




Sampling In The Frequency Domain

Amplitude Amplitude

by, X1
. )

| R

0 Fs Fs 2Fg 3Fs Freq

* Must have at least 2xBandwidth.
— Less than this means the bands overlap
— And it is impossible to recover the original waveform
— This is called aliasing.




Sampling: Time Domain Aliasing
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e More than one possible sine wave fits the samples
— There are an infinite number that do!
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g: Frequency Domain Aliasing

HRE

* Like having a “Through the
Looking Glass” mirror.

— At f=Fs/2,
— And at f=0

* A sine wave walks into the
mirror...

e And one walks out!

e You see an infinite
number of reflected
baseband spectra in
two parallel mirrors




The Result of Sampling

After sampling, the infinite frequency range of the
real world.

The infinite frequency of:

— minus infinity

— to plus infinity

Collapses onto sampled frequency of:

— minus Fs/2
— to plus Fs/2

Or, more conventionally, O Hz to Fs Hz
Which is why the samples are not what they seem!




The Result of Sampling

* 0to Fsis all you have!

— But you can only use half of it

— Any frequencies that are outside
that range

— Are “wrapped around” back
into it!

— True for frequencies already
present in the signal

— Or ones you generate by

3F,

distortion! .
— We need to N s
unwrap the OF, Circumference

Equals F,

toilet roll!



Getting The Waveform Back: Reconstruction

plitude Convolution Amplitude

® ------ :
|
% |
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Freq % 0 Fs Fs 2Fs Freq 3Fs
2
A¥Iitude Amplitude
0 Fs Fs 2Fg Freq 3Fg

 Removing sampling aliases
— In the frequency domain
— The baseband can be separated from the aliases
— By filtering with a perfect low-pass reconstruction filter




Getting The Waveform Back: Reconstruction

Convolution

plitude Amplitude
® ------ :
|
% |
. .
Freq % 0 Fs Fs 2Fs Freq 3Fs
2
A¥Iitude Amplitude
0 Fs Fs 2Fg Freq 3Fg

* Leaving the baseband
* Which is the original signal before sampling
* But what does this look like in the time domain?




Getting The Waveform Back: Reconstructlon
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i This point and all the other
SN G e points are replaced by the

“impulse response” h(t) = impulse response.
Sinc(t)

h.."

* The reconstruction filter replaces the samples with the
impulse response to re-form the original input signal.

* Regular sampling has a simple, linear, reconstruction
process
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Getting The Waveform Back: Reconstruction
A'A'AéAA AAA\A’A

WY
 Because the reconstruction filter has zeros at
every other sampling point

— Besides the sample point
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Crosses zero at all sample times #0

It is orthogonal to itself for samples T, seconds apart

This means the sample values can be seen as coordinates!
However, the impulse response itself is infinitely long...




Getting The Waveform Back: Reconstruction

y(n)

 Samples of the filtered signal are orthogonal
— Thus, a sequence of samples specifies a unique point
— One point to rule them all...
— That contains ALL the information about the signal
— Thus, one can perfectly reconstruct the original signal




Analogue vs Software Peak Detector

o |
_|_
Eenv
I
( a) Idsc:h T

 The analogue peak
detector can see the
whole waveform

* The software one can
only see sample values

E’HV

AWA
Vi

(b)

AN
Vi

Input: signal

Output: index

peakIndex : = null;
peakValue :— null;

for index, value in signal do

peakIndex :— index;
peakValue :— value;

end

end
return peaklndex;

if peakValue null or value >

peak Value the




Band Limited Impulse

e So how bad can the error be?

e Let’s look at the worst case
— A band limited impulse




Digital Impulse Perfect Sample Phase

* |f the impulse is perfectly sampled in the middle

 Thereis no error
— The sample value is the peak of the impulse




Digital Impulse Different Sample Phase

* But if the impulse is not sampled in the middle

 There will be an error
— The sample value is not the peak value of the impulse




Worst Digital Peak Detector Error

e How bad can it be?

— Pretty bad it underestimates the peak 0.64 instead of 1
—-3.9dB of error!




Why Values Between The Samples Matter!

+Max

-Max

* Setting the maximum D/A output to the supply voltage

e Results in clipping downstream due to the waveform value
between the samples

* Overshoot is approximately 1.5dB




Estimating The Analogue Waveform
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* One way is by increasing the sample rate




Increasing The Sample Rate
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* |nsert zeros between samples
e And then filter to reconstruct the in-between

samples

s 2 >
Time




Estimating The Analogue Waveform
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* 4 times up-sampling typically used
— For Example, ITU BS 1770-4 ( Loudness meter)
— But it introduces delay (6 samples)
— And computation 48 multiply adds




Polyphase Interpolation By L

* Eolz) —
y[m]
x[n] "| Ei2) Lfs
Sample rate: fs
¥ Ep-1(z)

e Same input sample is fed to L low pass filters

— Each calculates one intermediate sample position

— By sub-sampling the Sinc coefficients at the higher sample rate
* The outputs are successively sampled

* To give L times interpolated output
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Sinc(t) Amplitude (in dB)
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Time (in multiples of T_)

* The longer the impulse the lower the estimation errors
— But Sinc(t) decays very slowly =1/t)
— So very long filters are required

* Problem with both delay and computation



The Need For Low Delay

__.Sidechain_________________.

Level ——External SC Input |

Detection |« :
Circuit D Mo

___________________________________________

f Control
+ Signal

v
Gain
Audio Input » Reduction » Audio Output
Circuit

* Feedback Limiters/Compressors need a low delay
level detection method

* Low delay can have lower computation




Alternative 1: Quadratic Interpolation

Peak Estimate

* Use 3 adjacent ampiitude
samples o /
P
* Construct a e A .

parabola going
through them LA A

* Usetheitto e LIRERTEIIY
calculate:

i
;
— ‘p’ the peak E
E
P

Fitted
Parabola

position

— ‘Y(p)’ the peak | .
height -1 0 1 Time

Peak Sample Peak Position




Alternative 1: Quadratic Interpolation

Peak Estimate

Amplitude
1 0 — 7y Y(p)
P = — — R ! SO
2 i -l,ll:‘ _I_ nli' E’.))__ ....................... _y
ks SERETERRTPETRERRR SO Parabola
¢
€[-1/2,1/2] |
A E
f
i
E
s
E
. ,. 1 E
ylp) =5 — —(a—v)p. E
1 0 p 1 Time

Peak Sample Peak Position




Quadratic Interpolation: Frequency Peaks

O | | | | | |

' ' ' ' | —— DTFT |

- 20 | —— Parabola| |

T 40 ' -
5

’% 60 -

= ; ;

oLl i i AYAYATAYI

0 1 2 3

Normalized Frequency (rad/sample)

e Parabolic interpolation can be used for frequency
domain peaks
— Use Gaussian Window

* Note can use Hamming trick to limit window length
* Add 9% step, to cancel first bin




Quadratic Interpolation: Frequency Peaks

Original signal Magnitude spectrum
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* Add zeros to interpolate the spectrum

— At least 2 times
* https://courses.grainger.illinois.edu/bioe205/sp2023/lectures/lec09/




Quadratic Interpolation: Frequency Peaks
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Normalized Frequency (rad/sample)

e Parabolic interpolation can be used for frequency
domain peaks
— Use Parabolic interpolation on the log-magnitude result

— Because the lobes shape parabolic at the top
* From Julius Smith of CCRMA




Alternative 2: B-Spline Interpolation

1 I et
2
2
0.8 I
| —2y
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So06f — 5|
2
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<
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0.2

00 1 2 3 4 Tirﬁe in6samp7|es 8 9 10 11 12
* They are formed by successively convolving the

— Zeroth order spline, a simple rectangle of width one, B,
* To yield the higher order B, splines

— B, is equivalent to linear interpolation

* They have the advantage of a finite time extent, not infinity!




Alternative 2: B-Spline Interpolation

Amplitude

0.2

O 1

o)

Time in samples

* Unfortunately, the splines overlap other samples
— They are not independent
* So, you can’t use the sample values directly
— Because they interact.
* Usually requires a matrix inversion per output point




Using a Filter Instead Of Matrix Inversion

. o) 2.() Recon-
x(0) Analysis struction 110,
—»  Fiter | X > et o
ha(_t)
. & hA2)
5(t—nT,)
n=—_1

 Unser showed you can replace the matrix inversion by
a filter.

— With a transfer function H(z) of:

H(z)=

z+6+z"




Using a Filter Instead Of Matrix Inversion

. o) 2.() Recon-
x(0) Analysis struction 110,
—»  Fiter | X > et o
ha(_t)
. & hA2)
5(t—nT,)
n=—_1

 Unser showed you can replace the matrix inversion by
a filter.

— With a transfer function H(z) of:

H(z)=

64z

* Unfortunately, it’s non-causal!
— (Pre-cognitive processing anyone? )




Using a Filter Instead Of Matrix Inversion
Complementary Pre-filter for a 3/ order spline @, = \/g —2=-0.26794919243

Input 1 al Output
—> —> >
l—-a:z —a,z
Running Forwards in Time Running Backwards in Time

* Fortunately, this can be realised using two IIR filters.
— One running forwards in time
— And one running backwards in time!

* Tricky to do in real time
— But ok for mastering and pictures.

* In practice one must make a windowed FIR equivalent

— Shorter than Sinc(t) because it decays faster
(exponentially vs 1/t).




Using a Filter Instead of Matrix Inversion

n = 1: - (piecewise linear) n = 3: - - - (cubic spline)

+00 TR e
Complementary Pre- Spline Reconstruction
filter (Analysis Filter) 5(t - nT;, ) Filter

H=-—00

 This is what the filters look like in the time domain, for n=3

— Reconstruction filter has a finite impulse response.

— Pre-filter has an infinite impulse response so is truncated
(windowed)




Using a Filter Instead of Matrix Inversion

n = 1: - (piecewise linear) n = 3: - - - (cubic spline)

x(1)

+00 +
Complementary Pre- 5 T Spline Reconstruction
filter (Analysis Filter) (t - E) Filter

H=-00

* This is what the filters look like in the Frequency domain,
for n=3
— Reconstruction filter has a casual roll-off response.
— Pre-filter has a peaked response




Amplitude in dB relative to OHz

=
L]
L]

-120

N ; A ] Vi |
0.1Fs 1Fs
Frequency

* This is what the filters look like in the Frequency domain,
for n=3

10Fs

5 —F’re Fllter |
.| —3rd Order B-spline

— Composite Response

100Fs 200Fs

— Spline reconstruction filter has a casual roll-off response.

— Pre-filter has a peaked response




Filter Based B,-Spline Interpolation

* When the B, splineis on a | -
sample point L degree 1 :

— |t outputs that sample
value

* When the B, spline is
between two sample
points 0

— It outputs a weighted

sum of the two adjacent
sample values

* A 2-tap FIR filter with 1
dynamically varying
coefficients

— Determined by the spline 0.0
values of the input
samples

— Linear interpolation 0

0.9




Filter Based B5-Spline Interpolation

degéree 3

* When the B; splineisona
sample point
— It outputs that sample
value

* When the B; spline is
between two sample
points
— |t outputs a weighted

sum of the four adjacent
sample values

* A 4-tap FIR filter with
dynamically varying
coefficients

— Determined by the spline
values of the input
samples

— You can calculate them

1

0.9

0.9




0_

=201

—40t

-60

=80

-100

predicted L, approximation error (dB)

-120

asymptotic moide

_140 1 1 1 1 1
0.1 0.2 0.5 1 2 5 10
sampling step a

 Oversampling is probably necessary
— Two times or greater?
— May be provided already for 96kHz sample rate

* And/or higher order splines




Conclusion

The ability to measure and control an audio waveform's
level is an important part of many audio devices.

However, because the audio waveform is sampled
— The actual level may not be the sample values,
— But instead, may be an intermediate value between the samples

— Non-linear operations do not work as expected

— Dynamic variation in levels are also affected
* Especially for inter sample peaks

Various methods have been proposed to ameliorate this
— Up-sampling

— Quadratic interpolation

— B-Spline Interpolation

The samples are not always what they seem!




Any Questions?
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