KNEE-DEEP LEARNING

PRACTICAL STEPS TO GET STARTED WITH AUDIO ML

MARTIN SWANHOLM

Get started...

Practical Steps to Get Started with Machine Learning for Audio

Get started...

Practical Steps to Get Started with Machine Learning for Audio

...and get creative!

v ® Hindenburg X +

€ = C 25 hindenburg.com

@ HINDENBURG

PRODUCTS BLOG
@ HINDENBURG PRO UPGRADE FEATURES SPECS

HINDENBURG PRO

we get you and we’ve got you

Hindenburg is all about easing your workflow and helping you craft great stories. The editor
has every tool you need to record, transcribe, edit, and publish professional audio
recordings - and is at the same time so intuitive to use that you won’t need deep technical
expertise to start producing your first piece.

TRIAL > FEATURES > -

ACADEMY

_‘4-

COMPARISON

Welcome to Hindenburg PRO!!

SUPPORT

(L]

SCREENSHOTS

You’re looking for an audio editor designed specifically for the spoken word?

= (] X
* &
2
SIGN IN @
ABOUT PERSONAL ¥
LICENSING STUDENTS & TEACHERS

Audio Technology

- what does it actually do?

- how does it operate?

- what processes are taking place?

- what are the inputs and outputs?

- how do we interact with systems or tools?

- how can modules be combined to create larger systems?

Intelligence

Human

Artificial

Neural Network Models for Audio

-

y = f(x;0)

float* f(const float* x, size_t size);

def f(x: array) -> array:

E Universal approximation theore X + v =]}

< > C] % enwikipedia.org/wiki/Universal_approximation_theorem @ @ B| ' OB & evwn
— WIKIPEDIA Donate Create account Log in
The Free Encyclopedia
Universal approximation theorem 9 languages
Article Talk Read Edit View history Tools s

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, universal approximation theorems are theorems! '/l of the following form: Given a family
of neural networks, for each function f from a certain function space, there exists a sequence of neural networks @1, @2, - . . from the family, such
that ¢, — f according to some criterion. That is, the family of neural networks is dense in the function space.

The most popular version states that feedforward networks with non-polynomial activation functions are dense in the space of continuous functions
between two Euclidean spaces, with respect to the compact convergence topology.

Universal approximation theorems are existence theorems: They simply state that there exists such a sequence ¢, ¢2, - - - — f, and do not
provide any way to actually find such a sequence. They also do not guarantee any method, such as backpropagation, might actually find such a
sequence. Any method for searching the space of neural networks, including backpropagation, might find a converging sequence, or not (i.e. the
backpropagation might get stuck in a local optimum).

Universal approximation theorems are limit theorems: They simply state that for any f and a criteria of closeness € > 0, if there are enough neurons
in a neural network, then there exists a neural network with that many neurons that does approximate f to within €. There is no guarantee that any
finite size, say, 10000 neurons, is enough.

Setup [edit]

Artificial neural networks are combinations of multiple simple mathematical functions that implement more complicated functions from (typically) real-
valued vectors to real-valued vectors. The spaces of multivariate functions that can be implemented by a network are determined by the structure of
the network, the set of simple functions, and its multiplicative parameters. A great deal of theoretical work has gone into characterizing these function

spaces.

Most universal approximation theorems are in one of two classes. The first quantifies the approximation capabilities of neural networks with an
arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each
containing a limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation
theorems for neural networks with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded
width" case).

History e

Universal approximation theor: X + v — (|] 4

< (@ [% enwikipedia.org/wiki/Universal_approximation_theorem @ @

L

&
@

o OB K evw =

We-show that standard multilayer feedforward
networks with as few as a"single: hidden layer and
arbitrary-bounded-and-nonconstant-activation
function-are universal approrimators with-respect-to
Lp(u) performance criteria, for arbitrary finite
input environment-measures Wy provided only that
sufficiently-many hidden units are available. If the
activation function-is continuwous; bounded- and
nonconstant, then continuous mappings can be
learned uniformly over compact input sets. We also
give very general conditions ensuring that networks
with 'sufficiently smooth activation “functions-are
capable of arbitrarily accurate approximation to a
function and its derivatives.

Kurt Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural Networks, Volume 4, Issue 2, 1991, Pages 251-257

L

RO ikipedia.org/wiki/Universal_approximation_theorem

= ;:IKIPEDIA Donate Create account Log in
The Free Encyclopedia

Universal approximation theorem %\, 9languages -
Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, universal approximation theorems are theorems! 2] of the following form: Given a family
of neural networks, for each function f from a certain function space, there exists a sequence of neural networks ¢1 , @2, . . . from the family, such

that ¢, — f according to éé_l[i';critélgn. B'nhi@tw?rzily ﬁhwtnemﬂe@éaqﬂdfumnwé% l ay er
L feedforward metworks with arbitrary

Universal approximation 1S4t GSIMEAR Geo G ELG/TLE w28 CAPBDIEOF 4., 1 avd dorot
provide any way to actually find such a sequence. TheE zlso do not guarantee any method, such asgbackpropagation, might actually find such a

sequence. Any method for&ﬁpwrﬁ-%zm er%y’ug m;ﬁﬂﬁ%’n@ a converging sequence, or not (i.e. the
) .
unction to arbitrary accuracy.”

eorems are limit theorems: They simply state that for any f and a criteria of €loseness € > 0, if there are enough neurons

backpropagation might geftuck ina Ifcal optimu

Universal approximation t
in a neural network, then there exists a neural network with that many neurons that does approximate f to within €. There is no guarantee that any
finite size, say, 10000 neurons, is enough.

Setup [edit)

Artificial neural networks are combinations of multiple simple mathematical functions that implement more complicated functions from (typically) real-
valued vectors to real-valued vectors. The spaces of multivariate functions that can be implemented by a network are determined by the structure of
the network, the set of simple functions, and its multiplicative parameters. A great deal of theoretical work has gone into characterizing these function
spaces.

Most universal approximation theorems are in one of two classes. The first quantifies the approximation capabilities of neural networks with an
arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each
containing a limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation
theorems for neural networks with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded
width" case).

History et

\D % en.wikipedia.org/wiki/Universal_approximation_theorem

WiKIPEDIA

Donate Create account Log in
The Free Encyclopedia g

Universal approximation theorem % 9languages
Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, universal approximation theorems are theorems! 2] of the following form: Given a family
of neural networks, for each function f from a certain function space, there exists a sequence of neural networks ¢, @3, . . . from the family, such

oS A mewral network with - at least

The most popular version states that feedforward networks with non-polynomial activation functions are dense in the space of continuous functions

between two Eucli@ﬂ@s, htédfd elrznpalt&"yﬁ?ﬂ‘m@a n a pp 'r'O aj'im a, t 6

Universal approximation theorems are existence theorems: They simply sjate that there exists such a sequence 1,2, ++ — f,and do not

provide any way to@?wd s%%nﬁlmtoguar rﬂ?ﬁz @ttdij 9?% baé@paw actually find such a

sequence. Any metho arching the space of neural networks, incl&ding backpropagation, might find a converging uence, or not (i.e. the

backpropagation m&téegt?,q}mé Igfl OFH:’IUél)C u,r.a/ C yt . 'I:'U 6 n 6 n 0 u

any f and a criteria of closeness e'g 0, if there are enough neurons

:nien:;;alsr;eym;c;rg?;:gmf:& O,zz‘lesal nd/%wd thw;iw 61??1@»7:@%@@6;2@@)&’»tqz‘.b ﬁre is no guarantee that any
setup w0 JUNCEIONS.”

Artificial neural networks are combinations of multiple simple mathematical functions that implement more complicated functions from (typically) real-

Universal approximation theorems are limit theorems: They simply sta

valued vectors to real-valued vectors. The spaces of multivariate functions that can be implemented by a network are determined by the structure of
the network, the set of simple functions, and its multiplicative parameters. A great deal of theoretical work has gone into characterizing these function
spaces.

Most universal approximation theorems are in one of two classes. The first quantifies the approximation capabilities of neural networks with an
arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each
containing a limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation
theorems for neural networks with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded
width" case).

History [edit

Learning by examples

Example input ? Model output

Learning by examples

Example input ’) Model output

Target output

Example input Target output

Training data

Learning by examples

Example input ’7 Model output

- Loss function

Target output

A

Example input Target output

Training data

RARGRARS

IR
- Ak
4%

\V}
WO

Wandmsi
o& A & () (‘ 4« {) O’(‘ 4«?
0. lig %,»w, %. A2
DS
BRI

)

Vamn
YR ORX XKD
&%?“\» A\ @?0/“@?0/ -

VAV

W

Input layer

Hidden layers

Output layer

Input layer

_(1)
Hidden layers .
(((1 ((
() o (-1 |
Output layer 25 = >, W, a - b

) .
ag) = El(itl‘»-’ﬂtl()l’l(zg))

.

Loss functions

- Depends on the task and the type and shape of the data
- Determines what we want to optimize for
- Controls the optimization process

- Classification
- Cross-Entropy loss
- Activation: Softmax (+ argmax)

- Regression
- L1, L2 loss

Activation function

- RelLU
- Sigmoid

Optimization

-SGD
- Adam

Input layer

Hidden layers

Output layer

QO ()
% a %
AR RARA

o «‘2«0& e O
N YO N Y

VP~V U
Qv.ﬁx.mcv.»\.,ﬁnv.ﬁQﬁa

4’. Vo' 4’.,»0 Ve 4’., Y/
UK X 0.9,
’ '/‘\% ‘@D@

»*N ?‘ w%‘w“wo\w%‘ 2
0 N\l N\ /NI 7\

Learning by examples

Example input ’7 Model output

- Loss function

Target output

A

Example input Target output

Training data

-

y = f(x;0)

float* f(const float* x, size_t size);

def f(x: array) -> array:

Pablo Ruiz, “Understanding and visualizing ResNets”, https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8

Convolution

Aaron van den Oord, et al. “WaveNet: A Generative Model for Raw Audio”, https://arxiv.org/abs/1609.03499

Aaron van den Oord, et al. “WaveNet: A Generative Model for Raw Audio”, https://arxiv.org/abs/1609.03499

Auto-Encoder

Encoder

Latent Space

Decoder

Variational Auto-Encoder (VAE)

Encoder

Latent Space

Decoder

Generative Adversarial Network (GAN)

128 64 64 2
U-net

input
image
tile

output
segmentation
map

4

L dL g

A4

392 x 392
388 x 388

572 x 572
570 x 570
568 x 568

' 128 128
256 128

I

2842
2822

' 256 256

Z

512 256

“é[ltml'gl =» conv 3x3, ReLU

=& copy and crop

512 512 1024 512
1024 5 O 4 up-conv 2x2
N-*’_.‘_

Olaf Ronneberger, et al., “U-Net: Convolutional Networks f@ Biomedica?ﬁmage Segmentation”, https://arxiv.org/abs/1 SOMSQan 1x1

Frequency-Domain models

Spectrograms or raw transform-domain data (stft)
Other transforms

2D-CNNs
Phase-coherence

Other Types of Networks

* Transformers
e Stable Diffusion

Fiiiiiiiiiiiiii

]
i

11

:
!
%t
%t

:

I2
I
I
I
I
2
I
[
12

F W AT IR IR = S = &, SO fip tassEm AR Y

.

%

i il Waae

GEREE CiE oo G n
i G i
oV #

?$

Local computer

3
* Gets you started quickly
 Azure * Supports all workflows
« AWS » Easeofuse
* Google Cloud * Good for light to moderate training

* Not efficient for large-scale training

$

* Lambda Labs
 Paperspace

DEI

Data acquisition

* Make your own!
* Research datasets
* Use other data in the public domain
e Synthetic data
* Synthesis
* Acoustic simulations
* Sequencing/layering of sounds
* Qutput from other models

* Buyit/Licenseit $$$
* Use any material for own research and learning

e Be creative!

Data acquisition

* Make your own!
* Research datasets
* Use other data in the public domain
e Synthetic data
* Synthesis
* Acoustic simulations
* Sequencing/layering of sounds
* Qutput from other models

* Buyit/Licenseit $$$
* Use any material for own research and learning

e Be creative!

Observe rules, regulations and licensing terms!

Data acquisition

* Make your own!
* Research datasets
* Use other data in the public domain
e Synthetic data
* Synthesis
* Acoustic simulations
* Sequencing/layering of sounds
* Qutput from other models

* Buyit/Licenseit $$$
* Use any material for own research and learning

e Be creative!

Observe rules, regulations and licensing terms!

Be mindful of ethical considerations!

Technology stack

Hardware CPU CUDA/Nvidia ~ ROCm/AMD MPS / Apple ARM ai

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai

PyTorch (Python framework and API) Other languages

LibTorch (C++ API)

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai

Additional frameworks on top of PyTorch

PyTorch (Python framework and API) Other languages

LibTorch (C++ API)

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai

Your application code Application code

Additional frameworks on top of PyTorch

PyTorch (Python framework and API) Other languages

LibTorch (C++ API)

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai

class ConvModelSimple(nn.Module):
def __init_ (self, num_classes=4, kernel_sizes=[33, 5, 5, 3], strides=[16, 8, 4, 2]):

super(ConvModelSimple, self)._ init_ ()

self.convl = nn.Convld(in_channels=1, out_channels=16, kernel_size=kernel_sizes[@], stride=strides[@], dilation=4)
nn.Convld(in_channels=16, out_channels=32, kernel_size=kernel_sizes[1l], stride=strides[1])
nn.Convld(in_channels=32, out_channels=64, kernel_size=kernel_sizes[2], stride=strides[2], dilation=2)
self.conv4 = nn.Convld(in_channels=64, out_channels=128, kernel size=kernel sizes[3], stride=strides[3])
self.pool = nn.AdaptiveAvgPoolld(1)
self.fc = nn.Linear(128, num_classes)

self.conv2
self.conv3

def forward(self, x):

= F.relu(self.convl(x))
= F.relu(self.conv2(x))
= F.relu(self.conv3(x))
F.relu(self.conv4d(x))
= self.pool(x)

= torch.flatten(x, 1)

= self.fc(x)

return x

X X X XK X X X
|

for x_batch, target _batch in data_loader:
optimizer.zero_grad()
output = model(x_batch)

loss = torch.nn.functional.cross_entropy(output, target batch)
loss.backward()

optimizer.step()

High-Level Frameworks

- Fastai
- PyTorch Lightning

- Keras
- scikit-learn

Applications

High level API

DataBlock

Mid level API

Generic General

Low level API

. Reversible 00 Optimized
Pipeline
Transforms Tensors ops

https://fast.ai

Netron

https://netron.app/

{’_34::1792::1*1)1
(64)

(128x256x1x1)
(128)

fetisia s ttivg
W (96x192x1x1)
B (96)

W (128x96x3x3)
B (128)

Concat
com

W (128x256x1x1)
B (128)

W (192x128x3x3)

» A\

W (16x192x1x1)

W (32x16x5x5)
B (32)

W (32x256x1x1)
B (32)

W (96x32x5x5)

B (96)

W (16x480x1x1)

< =

W (32x192x1x1)
B (32)

W (64x256x1x1)
B (84)

Tensorboard

* Pinned

model_dense_layer_1

Learning and Inspiration

RAVE: A variational autoencoder for fast and
high-quality neural audio synthesis

Antoine Caillon & Philippe Esling
IRCAM - Sorbonne Université
CNRS UMR 9912
1, place Igor Stravinsky, Paris, France
{caillon,esling}@ircam.fr

Abstract

Deep generative models applied to audio have improved by a large margin the
state-of-the-art in many speech and music related tasks. However, as raw wave-
form modelling remains an inherently difficult task, audio generative models are
either computationally intensive, rely on low sampling rates, are complicated to
control or restrict the nature of possible signals. Among those models, Variational
AutoEncoders (VAE) give control over the generation by exposing latent vari-
ables, although they usually suffer from low synthesis quality. In this paper, we
introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast
and high-quality audio waveform synthesis. We introduce a novel two-stage train-
ing procedure, namely representation learning and adversarial fine-tuning. We
show that using a post-training analysis of the latent space allows a direct control
between the reconstruction fidelity and the representation compactness. By lever-
aging a multi-band decomposition of the raw waveform, we show that our model
is the first able to generate 48kHz audio signals, while simultaneously running
20 times faster than real-time on a standard laptop CPU. We evaluate synthesis
quality using both quantitative and qualitative subjective experiments and show
the superiority of our approach compared to existing models. Finally, we present
applications of our model for timbre transfer and signal compression. All of our
source code and audio examples are publicly available.

1 Introduction

Deep learning applied to audio signals proposes exciting new ways to perform speech generation,
musical composition and sound design. Recent works in deep audio modelling have allowed novel
types of interaction such as unconditional generation (Chung et al., 2015; Fraccaro et al., 2016; Oord
et al., 2016; Vasquez & Lewis, 2019; Dhariwal et al., 2020) or timbre transfer between instruments
(Mor et al., 2018). However, these approaches remain computationally intensive, as modeling audio
raw waveforms requires dealing with extremely large temporal dimensionality. To cope with this

. S, S © CEE PEE (R (- i [I T £ P 0 (UL P A S

3 Method

3.1 Two-stage training procedure

Ideally, the representation learned by a variational autoencoder should contain high-level attributes
of the dataset. However, two perceptually similar audio signals may contain subtle phase variations
that produce dramatically different waveforms. Hence, estimating the reconstruction term in equa-
tion (2) using the raw waveform penalizes the model if those subtle variations are not included in
the learned representation. This might both hamper the learning process and include in the latent
space those low-level variations about audio signal that are not relevant perceptually. To address this
problem, we split the training process in two stages, namely representation learning and adversarial
fine-tuning.

3.1.1 Stage 1: Representation learning

The first stage of our procedure aims to perform representation learning. We leverage the multiscale
spectral distance S(-,-) proposed by Engel et al. (2019) in order to estimate the distance between
real and synthesized waveforms, defined as

5 [ISTFTL (0~ STFLLle | i}
sty = 3 | e s (ST) = ST)] .

where N is a set of scales, STFT,, is the amplitude of the Short-Term Fourier Transform with
window size n and hop size n/4, and || - ||, || - ||1 are respectively the Frobenius norm and L,
norm. Using an amplitude spectrum-based distance does not penalize the model for inaccurately
reconstructed phase, but encompasses important perceptual features about the signal. We train the
encoder and decoder with the following loss derived from the ELBO

Luae (%) = Esp(x|z) [S(%,X)] + 8 x D [qs(2[x)[|p(2)], ©)

We start by training the model solely with L,,., and once this loss converges, we switch to the next
training phase.

3.1.2 Stage 2: Adversarial fine-tuning

The second training stage aims at improving the synthesized audio quality and naturalness. As we
consider that the learned representation has reached a satisfactory state at this point, we freeze the
encoder and only train the decoder using an adversarial objective.

GANSs are implicit generative models allowing to sample from a complex distribution by transform-
ing a simpler one, called the base distribution. Here, we use the learned latent space in the first stage
as the base distribution, and train the decoder to produce synthesized signals similar to the real ones
by relying on a discriminator). We use the hinge loss version of the GAN objective, defined as

Liis(x,2) = max(0,1 — D(x)) + Eg~p(x|z) [max(0,1 + D(x))],
Lgen(2) = —Egropix|z) [P(X)]- (7N

In order to ensure that the synthesized signal X does not diverge too much from the ground truth x,
we keep minimizing the spectral distance defined in equation (5), but also add the feature matching

w | multiband spectral |,
Stage 1: - distance N
Representation Leaming ;

multiband

e

\\L_._‘ multiband H encoder } ‘;@ I .
Stage 2:) - sg .]
Adversarial fine-tuning

Antoine Caillon, et al., IRCAM, “RAVE: A variational autoencoder for fast and high-quality neural audio synthesis”,

v O GitHub - acids-ircam/RAVE: Off X =+ = O

&« c 2 github.com/acids-ircam/RAVE [«d -

o Product ¥ Solutions ¥ Resources ¥ Open Source ¥ Enterprise ¥ Pricing

A acids-ircam / RAVE (Public £\ Notifications % Fork 182 vF Star 13k

<> Code () Issues 25 1% Pull requests 6 L) Discussions () Actions [Projects () Security |~ Insights

¥ master ~) od 3 Q Goto file <> Code ~ About

Official implementation of the RAVE

7 g0 T i . . .
nonths ago {0 484 Commits model: a Realtime Audio Variational

' domkirke Update README.md

autoEncoder
B github/workflows Update actions.yml last year
audio ai deep-learning
B .vscode Add 1d spectral discriminator last year neural-netwark generative-model
docs update README last year
. - 2 o [Readme
| rave Passing to 2.3.1 last year &3 View license
A Activity
B scripts fixed tests + n_channels for wassers... last year
¥ 1.3k stars
I tests fixed tests + n_channels for wassers... last year ® 43 watching
[.gitignore split ci runs last year v LR
Report repository
[LICENSE change LICENSE to CC-BY-NC-4.0 2 years ago
[MANIFEST.in include augmentation path in build ... last year GELEL
[README.md Update README.md 7 months ago © v231 (Latest
on Dec 19, 2023
[requirements.txt last fixes last year
Packages
[setup.py attaching versioning to code last year

No packages published

[T] README &3 License = .
Contributors 4

caillonantoine Antoine Caillon

. domkirke Axel Chemla--Romeu-Santos

o capital-G Dennis Scheiba
0 acids-ircam ACIDS

Languages

RAVE: Realtime Audio Variational
autoEncoder

RAVE: Realtime Audio Variational
autoEncoder

Official implementation of RAVE: A variational autoencoder for fast and high-quality neural
audio synthesis (article link) by Antoine Caillon and Philippe Esling.

If you use RAVE as a part of a music performance or installation, be sure to cite either this
repository or the article !

If you want to share / discuss / ask things about RAVE you can do so in our discord server !
Please check the FAQ before posting an issue!

RAVE VST RAVE VST for Windows, Mac and Linux is available as beta on the corresponding
Forum IRCAM webpage. For problems, please write an issue here or on the Forum IRCAM
discussion page.

Tutorials : new tutorials are available on the Forum IRCAM webpage, and video versions are
coming soon!

e Tutorial: Neural Synthesis in a DAW with RAVE
e Tutorial: Neural Synthesis in Max 8 with RAVE

e Tutorial: Training RAVE models on custom data

¥ The latest in Machine Leaming X + - =

< C 25 paperswithcode.com o a ¥ b} a

[|||||] asdf o} Browse State-of-the-Art ~ Datasets ~ Methods More W Ssignin

A~ Top | 2 New T Greatest

o & subscribs
Trending Research -
Docling Technical Report & 7.866
© D545D/docling » = 19 Aug 2024 207 stars fhour
& Paper
©) code
Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated K976
Parameters by Tencent
- 2.39 stars /hour
(Tencent @ tencent/tencent-hunyuan-large » * 4 Nov 202
_, Hunyuan SR DU R S B Paper
o)
e of handling up to 256K tokens. 0 Code
. Logical Reasoning . Mathematical Problem-Solving
ADOPT: Modified Adam Can Converge with Any By with the Optimal Rate *192
ov 2024 165stars fhour
ular optil 1algorithms i
& Paper
m Image Classification
() Code
TableGPT2: A Large Multimodal Model with Tabular Data Integration 139
O tablegpt/tablegpt-agent » 4 Nov 2024 165 stars fhour
Inr
& A high-quality & raper
© code
. Benchmarking . Data Integration
OmniGen: Unified Image Generation %2301

& vertnrenacel ah/om ° o 17 San 20024

v

(_

< CG 25 paperswithcode.com/paper/the-whole-is-greater-than-the-sum-of-its-3 o a ¥ o} a
[|||||] Q Browse State-of-the-Art Datasets Methods More k4 SignIn

The Whole |s Greater than the Sum of Its Parts: Improving Music Source
Separation by Bridging Network

13 May 2023 - Ryosuke Sawata, Naoya Takahashi, Stefan Uhlich, Shusuke Takahashi, Yuki Mitsufuji - & Edit social preview

This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with
almost no increasing calculation cost. It consists of three components: (i) multi-demain loss (MDL), (ii) bridging operation, which couples the individual
instrument networks, and (iii) combination loss (CL). MDL enables the taking advantage of the frequency- and time-domain representations of audio signals. We
modify the target network, i.e., the network architecture of the original DNN-based MSS, by adding bridging paths for each output instrument to share their
information. MDL is then applied to the combinations of the output sources as well as each independent source; hence, we called it CL. MDL and CL can easily be
applied to many DNN-based separation methods as they are merely loss functions that are only used during training and do not affect the inference step.
Bridging operation does not increase the number of learnable parameters in the network. Experimental results showed that the validity of Open-Unmix (UMX),
densely connected dilated DenseNet {D3Net) and convolutional time-domain audio separation network (Conv-TasNet) extended with our X-scheme,
respectively called X-UMX, X-D3Net and X-Conv-TasNet, by comparing them with their original versions. We also verified the effectiveness of X-scheme in a
large-scale data regime, showing its generality with respect to data size. X-UMX Large (X-UMZXL), which was trained on large-scale internal data and used in our
experiments, is newly available at https://github.com/asteroid-team/asteroid/tree/master/egs/musdb18/X-UMX.

Code @ Edit Tasks @ Edit
€) asteroid-team/asteroid @ official * 2,269 @ . Music Source Separation
Datasets ot

B musoe1s

Results from the Paper o it

Ll Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods o Edit

1x1 Convolution » Average Pooling = Batch Normalization Concatenated Skip Connection » Convolution » Dense Block » Dense Connections » Dropout =
Global Average Pooling = Kaiming Initialization * Max Pooling « MDL = RelLU = Softmax

Contact us on: & hello@paperswithcode.com. Papers With Code is a free resource with all data licensed under CC-BY-SA.

Terms Datapolicy Cookies policy from

Hl The Whole Is Greater than the © X + =]

e

[imi] Q Browse State-of-the-Art ~ Datasets Methods More W signin

Show Me the Instruments: Musical Instrument Retrieval from Mixture Audio

15Nov 2022 - KyungSu Kim, Minju Park, Haesun Joung, Yunkee Chae, Yeongbeom Hong, SeongHyeon Go, Kyogu | ee « @ Edit social preview

As digital music production has become mainstream, the selection of appropriate virtual instruments plays a crucial role in determining the quality of music. To
search the musical instrument samples or virtual instruments that make one's desired sound, music producers use their ears to listen and compare each
instrument sample in their collection, which is time-consuming and inefficient. In this paper, we call this task as Musical Instrument Retrieval and propose a
method for retrieving desired musical instruments using reference music mixture as a query. The proposed model consists of the Single-Instrument Encoder and
the Multi-Instrument Encoder, both based on convolutional neural networks. The Single-Instrument Encoder is trained to classify the instruments used in single-
track audio, and we take its penultimate layer's activation as the instrument embedding. The Multi-Instrument Encoder is trained to estimate multiple
instrument embeddings using the instrument embeddings computed by the Single-Instrument Encoder as a set of target embeddings. For more generalized
training and realistic evaluation, we also propose a new dataset called Nlakh. Experimental results showed that the Single-Instrument Encoder was able to learn
the mapping from the audio signal of unseen instruments to the instrument embedding space and the Multi-Instrument Encoder was able to extract multiple
embeddings from the mixture of music and retrieve the desired instruments successfully. The code used for the experiment and audio samples are available at:
https:/github.com/minju0821/musical_instrument_retrieval

Code Edit Tasks @ Edit
©) minju0821/musical_instrument retrie... * 27 G . Retrieval
@ official
Datasets wed
Introduced in the Paper:

B e

Used in the Paper:

[Nsynth

Results from the Paper Edit

Lhl submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

— O minju0821 / musical_instrument_retrieval Q + - Q|| & .

<> Code (%) Issues 2 19 Pullrequests () Actions [Projects () Security |~ Insights

@ musical_instrument _retrieval pubic OWatch 1 -~ ¥ Fork 4 v T7 star 27~

¥ main ~ F o Go to file + <> Code ~ | About

No description, website, or topics

@ minjuos21 Update README.md 375e28f - last year ¥L) provided.
BB Multi_Instrument_En... codes for multi_inst_... 2 years ago d Readme
58 MIT license
B Single_Instrument_E... path arguments mod... 2 years ago
A~ Activity
B dataset Update README.md last year Y% 27 stars
BB evaluation dataset for eval. mod... 2 years ago o JUEE
¥ 4 forks
B models uploade requirement... 2 years ago Report repository
[LICENSE Update LICENSE 2 years ago
Releases
[README.md Update README.md 2 years ago
No releases published
[requirements.txt uploade requirement... 2 years ago
Packages
) README 2[3 MIT license =

No packages published

Contributors 2

Show Me the Instruments:
Musical Instrument Retrieval @ e
from Mixture Audio O

This repository contains the code and the dataset for our Languages

latlalald

Inference vs. Training

Deployment — use of trained models

Saving and converting a trained model

Inference runtimes
- ONNX
- RT Neural
- TF Lite

Get started...!

Regular Computer (CPU) + Cloud or Computer with GPU (Laptop/Desktop) or Mac with M3/ M4
VS Code

* Python plugins
* Python
* Miniconda
 Check out other projects
* Firstuse research datasets to learn
 Make you own data! - or collaborate with someone...
* Write your own training code or use a high-level framework (Fastai, Lightning)

e (Create!

@ untitled * - Hindenburg PRO
i File FEdit View Tools Window Help
H 2 = u g — +
Do ® MM @& =hEB 00 << QL Q
! NEW OPEN SAVE IMPORT EXPORT PUBLISH CUT COPY PASTE INSERT CLEAR SPLIT UNDO REDO ZOOMOUT ZOOMIN

o00:4o 00:02 00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20 00:22 00:24 00:26
[Ie—
o —
®« M S ft ¥

Microphone Amay ¥

https://open.spotify.com/album/0r02xBsC2yJxStKxhvFd5m?si=c3BW5WebR7eJcQk301e8-g

	Slide 1
	Slide 2: Get started…
	Slide 3: Get started…
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Neural Network Models for Audio
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Data
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Technology stack
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Learning and Inspiration
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Inference vs. Training
	Slide 82: Deployment – use of trained models
	Slide 83
	Slide 84

