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Audio Technology

- what does it actually do?

- how does it operate?

- what processes are taking place?

- what are the inputs and outputs?

- how do we interact with systems or tools?

- how can modules be combined to create larger systems?
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y = f(x;0)

float* f(const float* x, size_t size);

def f(x: array) -> array:
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From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, universal approximation theorems are theorems! '/l of the following form: Given a family
of neural networks, for each function f from a certain function space, there exists a sequence of neural networks @1, @2, - . . from the family, such
that ¢, — f according to some criterion. That is, the family of neural networks is dense in the function space.

The most popular version states that feedforward networks with non-polynomial activation functions are dense in the space of continuous functions
between two Euclidean spaces, with respect to the compact convergence topology.

Universal approximation theorems are existence theorems: They simply state that there exists such a sequence ¢, ¢2, - - - — f, and do not
provide any way to actually find such a sequence. They also do not guarantee any method, such as backpropagation, might actually find such a
sequence. Any method for searching the space of neural networks, including backpropagation, might find a converging sequence, or not (i.e. the
backpropagation might get stuck in a local optimum).

Universal approximation theorems are limit theorems: They simply state that for any f and a criteria of closeness € > 0, if there are enough neurons
in a neural network, then there exists a neural network with that many neurons that does approximate f to within €. There is no guarantee that any
finite size, say, 10000 neurons, is enough.

Setup [edit]

Artificial neural networks are combinations of multiple simple mathematical functions that implement more complicated functions from (typically) real-
valued vectors to real-valued vectors. The spaces of multivariate functions that can be implemented by a network are determined by the structure of
the network, the set of simple functions, and its multiplicative parameters. A great deal of theoretical work has gone into characterizing these function

spaces.

Most universal approximation theorems are in one of two classes. The first quantifies the approximation capabilities of neural networks with an
arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each
containing a limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation
theorems for neural networks with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded
width" case).
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We-show that standard multilayer feedforward
networks with as few as a"single: hidden layer and
arbitrary-bounded-and-nonconstant-activation
function-are universal approrimators with-respect-to
Lp(u) performance criteria, for arbitrary finite
input environment-measures Wy provided only that
sufficiently-many hidden units are available. If the
activation function-is continuwous; bounded- and
nonconstant, then continuous mappings can be
learned uniformly over compact input sets. We also
give very general conditions ensuring that networks
with 'sufficiently smooth activation “functions-are
capable of arbitrarily accurate approximation to a
function and its derivatives.

Kurt Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural Networks, Volume 4, Issue 2, 1991, Pages 251-257
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Artificial neural networks are combinations of multiple simple mathematical functions that implement more complicated functions from (typically) real-
valued vectors to real-valued vectors. The spaces of multivariate functions that can be implemented by a network are determined by the structure of
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Most universal approximation theorems are in one of two classes. The first quantifies the approximation capabilities of neural networks with an
arbitrary number of artificial neurons ("arbitrary width" case) and the second focuses on the case with an arbitrary number of hidden layers, each
containing a limited number of artificial neurons ("arbitrary depth" case). In addition to these two classes, there are also universal approximation
theorems for neural networks with bounded number of hidden layers and a limited number of neurons in each layer ("bounded depth and bounded
width" case).
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Learning by examples
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Input layer

Hidden layers

Output layer
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Loss functions

- Depends on the task and the type and shape of the data
- Determines what we want to optimize for
- Controls the optimization process

- Classification
- Cross-Entropy loss
- Activation: Softmax ( + argmax)

- Regression
- L1, L2 loss



Activation function

- RelLU
- Sigmoid



Optimization

-SGD
- Adam



Input layer

Hidden layers

Output layer
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Example input ’7 Model output

- Loss function
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y = f(x;0)

float* f(const float* x, size_t size);

def f(x: array) -> array:



Pablo Ruiz, “Understanding and visualizing ResNets”, https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8



Convolution






Aaron van den Oord, et al. “WaveNet: A Generative Model for Raw Audio”, https://arxiv.org/abs/1609.03499



Aaron van den Oord, et al. “WaveNet: A Generative Model for Raw Audio”, https://arxiv.org/abs/1609.03499




Auto-Encoder

Encoder

Latent Space

Decoder



Variational Auto-Encoder (VAE)

Encoder

Latent Space

Decoder



Generative Adversarial Network (GAN)
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Frequency-Domain models

Spectrograms or raw transform-domain data (stft)
Other transforms

2D-CNNs
Phase-coherence



Other Types of Networks

* Transformers
e Stable Diffusion
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Local computer

$3$
* Gets you started quickly
 Azure * Supports all workflows
« AWS » Easeofuse
* Google Cloud * Good for light to moderate training

* Not efficient for large-scale training

$

* Lambda Labs
 Paperspace
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Data acquisition

* Make your own!
* Research datasets
* Use other data in the public domain
e Synthetic data
* Synthesis
* Acoustic simulations
* Sequencing/layering of sounds
* Qutput from other models

* Buyit/Licenseit $$$
* Use any material for own research and learning

e Be creative!
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Data acquisition

* Make your own!
* Research datasets
* Use other data in the public domain
e Synthetic data
* Synthesis
* Acoustic simulations
* Sequencing/layering of sounds
* Qutput from other models

* Buyit/Licenseit $$$
* Use any material for own research and learning

e Be creative!

Observe rules, regulations and licensing terms!

Be mindful of ethical considerations!






Technology stack



Hardware CPU CUDA/Nvidia ~ ROCm/AMD MPS / Apple ARM ai




Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai



PyTorch (Python framework and API) Other languages

LibTorch (C++ API)

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai



Additional frameworks on top of PyTorch

PyTorch (Python framework and API) Other languages

LibTorch (C++ API)

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai



Your application code Application code

Additional frameworks on top of PyTorch

PyTorch (Python framework and API) Other languages

LibTorch (C++ API)

Low-level BLAS/CUBLAS ATen Eigen cuDNN

Hardware CPU CUDA / Nvidia ROCm / AMD MPS / Apple ARM ai



class ConvModelSimple(nn.Module):
def __init_ (self, num_classes=4, kernel_sizes=[33, 5, 5, 3], strides=[16, 8, 4, 2]):

super(ConvModelSimple, self)._ init_ ()

self.convl = nn.Convld(in_channels=1, out_channels=16, kernel_size=kernel_sizes[@], stride=strides[@], dilation=4)
nn.Convld(in_channels=16, out_channels=32, kernel_size=kernel_sizes[1l], stride=strides[1])
nn.Convld(in_channels=32, out_channels=64, kernel_size=kernel_sizes[2], stride=strides[2], dilation=2)
self.conv4 = nn.Convld(in_channels=64, out_channels=128, kernel size=kernel sizes[3], stride=strides[3])
self.pool = nn.AdaptiveAvgPoolld(1)
self.fc = nn.Linear(128, num_classes)

self.conv2
self.conv3

def forward(self, x):

= F.relu(self.convl(x))
= F.relu(self.conv2(x))
= F.relu(self.conv3(x))
F.relu(self.conv4d(x))
= self.pool(x)

= torch.flatten(x, 1)

= self.fc(x)

return x

X X X XK X X X
|



for x_batch, target _batch in data_loader:
optimizer.zero_grad()
output = model(x_batch)

loss = torch.nn.functional.cross_entropy(output, target batch)
loss.backward()

optimizer.step()



High-Level Frameworks

- Fastai
- PyTorch Lightning

- Keras
- scikit-learn



Applications

High level API

DataBlock

Mid level API

Generic General

Low level API

. Reversible 00 Optimized
Pipeline
Transforms Tensors ops

https://fast.ai



Netron

https://netron.app/
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RAVE: A variational autoencoder for fast and
high-quality neural audio synthesis

Antoine Caillon & Philippe Esling
IRCAM - Sorbonne Université
CNRS UMR 9912
1, place Igor Stravinsky, Paris, France
{caillon,esling}@ircam.fr

Abstract

Deep generative models applied to audio have improved by a large margin the
state-of-the-art in many speech and music related tasks. However, as raw wave-
form modelling remains an inherently difficult task, audio generative models are
either computationally intensive, rely on low sampling rates, are complicated to
control or restrict the nature of possible signals. Among those models, Variational
AutoEncoders (VAE) give control over the generation by exposing latent vari-
ables, although they usually suffer from low synthesis quality. In this paper, we
introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast
and high-quality audio waveform synthesis. We introduce a novel two-stage train-
ing procedure, namely representation learning and adversarial fine-tuning. We
show that using a post-training analysis of the latent space allows a direct control
between the reconstruction fidelity and the representation compactness. By lever-
aging a multi-band decomposition of the raw waveform, we show that our model
is the first able to generate 48kHz audio signals, while simultaneously running
20 times faster than real-time on a standard laptop CPU. We evaluate synthesis
quality using both quantitative and qualitative subjective experiments and show
the superiority of our approach compared to existing models. Finally, we present
applications of our model for timbre transfer and signal compression. All of our
source code and audio examples are publicly available.

1 Introduction

Deep learning applied to audio signals proposes exciting new ways to perform speech generation,
musical composition and sound design. Recent works in deep audio modelling have allowed novel
types of interaction such as unconditional generation (Chung et al., 2015; Fraccaro et al., 2016; Oord
et al., 2016; Vasquez & Lewis, 2019; Dhariwal et al., 2020) or timbre transfer between instruments
(Mor et al., 2018). However, these approaches remain computationally intensive, as modeling audio
raw waveforms requires dealing with extremely large temporal dimensionality. To cope with this

. S, S © CEE PEE (R (- i [ I T £ P 0 (UL P A S



3 Method

3.1 Two-stage training procedure

Ideally, the representation learned by a variational autoencoder should contain high-level attributes
of the dataset. However, two perceptually similar audio signals may contain subtle phase variations
that produce dramatically different waveforms. Hence, estimating the reconstruction term in equa-
tion (2) using the raw waveform penalizes the model if those subtle variations are not included in
the learned representation. This might both hamper the learning process and include in the latent
space those low-level variations about audio signal that are not relevant perceptually. To address this
problem, we split the training process in two stages, namely representation learning and adversarial
fine-tuning.

3.1.1 Stage 1: Representation learning

The first stage of our procedure aims to perform representation learning. We leverage the multiscale
spectral distance S(-,-) proposed by Engel et al. (2019) in order to estimate the distance between
real and synthesized waveforms, defined as

5 [ISTFTL (0~ STFLLle | i}
sty = 3 | e s (ST ) = ST )] .

where N is a set of scales, STFT,, is the amplitude of the Short-Term Fourier Transform with
window size n and hop size n/4, and || - ||, || - ||1 are respectively the Frobenius norm and L,
norm. Using an amplitude spectrum-based distance does not penalize the model for inaccurately
reconstructed phase, but encompasses important perceptual features about the signal. We train the
encoder and decoder with the following loss derived from the ELBO

Luae (%) = Esp(x|z) [S(%,X)] + 8 x D [qs(2[x)[|p(2)], ©)

We start by training the model solely with L,,., and once this loss converges, we switch to the next
training phase.

3.1.2 Stage 2: Adversarial fine-tuning

The second training stage aims at improving the synthesized audio quality and naturalness. As we
consider that the learned representation has reached a satisfactory state at this point, we freeze the
encoder and only train the decoder using an adversarial objective.

GANSs are implicit generative models allowing to sample from a complex distribution by transform-
ing a simpler one, called the base distribution. Here, we use the learned latent space in the first stage
as the base distribution, and train the decoder to produce synthesized signals similar to the real ones
by relying on a discriminator ). We use the hinge loss version of the GAN objective, defined as

Liis(x,2) = max(0,1 — D(x)) + Eg~p(x|z) [max(0,1 + D(x))],
Lgen(2) = —Egropix|z) [P(X)]- (7N

In order to ensure that the synthesized signal X does not diverge too much from the ground truth x,
we keep minimizing the spectral distance defined in equation (5), but also add the feature matching



w | multiband spectral |,
Stage 1: - distance N
Representation Leaming ;

multiband

e

\\L_._‘ multiband H encoder } ‘;@ I .
Stage 2: ) - sg . ]
Adversarial fine-tuning

Antoine Caillon, et al., IRCAM, “RAVE: A variational autoencoder for fast and high-quality neural audio synthesis”,
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RAVE: Realtime Audio Variational
autoEncoder

Official implementation of RAVE: A variational autoencoder for fast and high-quality neural
audio synthesis (article link) by Antoine Caillon and Philippe Esling.

If you use RAVE as a part of a music performance or installation, be sure to cite either this
repository or the article !

If you want to share / discuss / ask things about RAVE you can do so in our discord server !
Please check the FAQ before posting an issue!

RAVE VST RAVE VST for Windows, Mac and Linux is available as beta on the corresponding
Forum IRCAM webpage. For problems, please write an issue here or on the Forum IRCAM
discussion page.

Tutorials : new tutorials are available on the Forum IRCAM webpage, and video versions are
coming soon!

e Tutorial: Neural Synthesis in a DAW with RAVE
e Tutorial: Neural Synthesis in Max 8 with RAVE

e Tutorial: Training RAVE models on custom data
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This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with
almost no increasing calculation cost. It consists of three components: (i) multi-demain loss (MDL), (ii) bridging operation, which couples the individual
instrument networks, and (iii) combination loss (CL). MDL enables the taking advantage of the frequency- and time-domain representations of audio signals. We
modify the target network, i.e., the network architecture of the original DNN-based MSS, by adding bridging paths for each output instrument to share their
information. MDL is then applied to the combinations of the output sources as well as each independent source; hence, we called it CL. MDL and CL can easily be
applied to many DNN-based separation methods as they are merely loss functions that are only used during training and do not affect the inference step.
Bridging operation does not increase the number of learnable parameters in the network. Experimental results showed that the validity of Open-Unmix (UMX),
densely connected dilated DenseNet {D3Net) and convolutional time-domain audio separation network (Conv-TasNet) extended with our X-scheme,
respectively called X-UMX, X-D3Net and X-Conv-TasNet, by comparing them with their original versions. We also verified the effectiveness of X-scheme in a
large-scale data regime, showing its generality with respect to data size. X-UMX Large (X-UMZXL), which was trained on large-scale internal data and used in our
experiments, is newly available at https://github.com/asteroid-team/asteroid/tree/master/egs/musdb18/X-UMX.
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As digital music production has become mainstream, the selection of appropriate virtual instruments plays a crucial role in determining the quality of music. To
search the musical instrument samples or virtual instruments that make one's desired sound, music producers use their ears to listen and compare each
instrument sample in their collection, which is time-consuming and inefficient. In this paper, we call this task as Musical Instrument Retrieval and propose a
method for retrieving desired musical instruments using reference music mixture as a query. The proposed model consists of the Single-Instrument Encoder and
the Multi-Instrument Encoder, both based on convolutional neural networks. The Single-Instrument Encoder is trained to classify the instruments used in single-
track audio, and we take its penultimate layer's activation as the instrument embedding. The Multi-Instrument Encoder is trained to estimate multiple
instrument embeddings using the instrument embeddings computed by the Single-Instrument Encoder as a set of target embeddings. For more generalized
training and realistic evaluation, we also propose a new dataset called Nlakh. Experimental results showed that the Single-Instrument Encoder was able to learn
the mapping from the audio signal of unseen instruments to the instrument embedding space and the Multi-Instrument Encoder was able to extract multiple
embeddings from the mixture of music and retrieve the desired instruments successfully. The code used for the experiment and audio samples are available at:
https:/github.com/minju0821/musical_instrument_retrieval
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Inference vs. Training



Deployment — use of trained models

Saving and converting a trained model

Inference runtimes
- ONNX
- RT Neural
- TF Lite



Get started...!

Regular Computer (CPU) + Cloud or Computer with GPU (Laptop/Desktop) or Mac with M3/ M4
VS Code

* Python plugins
* Python
* Miniconda
 Check out other projects
* Firstuse research datasets to learn
 Make you own data! - or collaborate with someone...
* Write your own training code or use a high-level framework (Fastai, Lightning)
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