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A typical filter* can be described by just its impulse response (IR) and/or frequency response (FR), e.g.:
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1. Introduction

*(linear & time-invariant) 

DFT

IDFT

How do we apply this filter to a signal?
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1. Introduction

◼ Property of LTI systems: The output is the convolution between the input and the impulse response.

◼ Convolution in the time-domain is multiplication in the frequency domain (and vice-versa).

𝑦 𝑛 = ෍

𝑘=−∞

+∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = ෍

𝑘=−∞

+∞

ℎ 𝑘 𝑥[𝑛 − 𝑘] 𝑌 𝑤 = 𝑋 𝑤 𝐻 𝑤 = 𝐻 𝑤 𝑋(𝑤)
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1. Introduction

Size of the IR (samples)
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◼ Time-Domain Convolution (TDC) is O(N). Can we do better in the frequency domain? 

◆ Computing DFT/IDFT adds overhead

◆ Complex operations involve more FLOPs than real operations
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2. Fourier Transform (DFT & FFT)

◼ 1950’s: Start of the Nuclear Arms Race

◼ 1963: Limited Test Ban Treaty, restricting nuclear testing for the USSR, US and UK.

◼ How do you ensure everyone complies? 
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2. Fourier Transform (DFT & FFT)

◼ Must analyse the frequency content using the discrete Fourier transform.

◼ Problem: 1960s computers can’t compute large DFTs within reasonable time.

◼ Atmospheric tests: Measure radioactive isotopes in the air

◼ Underwater/Underground tests: Detect shockwaves using hydrophones/seismographs…?

◼ How to differentiate between a nuclear explosion and a natural geological event?
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2. Fourier Transform (DFT & FFT)

◼ Circa 1960 – Tukey begins exploring the math after a meeting with Kennedy

◼ 1965 - Cooley and Tukey publish their paper describing the modern FFT

◼ The complexity of the DFT goes from O(N²) to O(NlogN)
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2. Fourier Transform (DFT & FFT)

◼ Returns the frequency-domain representation of a discrete signal

◼ Fully reversible

◼ Complexity O(NlogN)
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3. Overlap-Add & Overlap-Save

◼ 1966 – Stockham investigates using Cooley & Tuckey’s algorithm for convolution

◼ Mention of splitting one of the two input signals into multiple “sections” 

◆ i.e. The input can be processed in blocks

◼ Introduction of the ‘Overlap-Add algorithm’
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3. Overlap-Add & Overlap-Save

◼ The output of a convolution between two signals of size 𝑁1 and 𝑁2 is: 𝑵𝟏 + 𝑵𝟐 − 𝟏 

◼ So, the size of the spectra must be at least 𝑩 + 𝑳 − 𝟏 (otherwise aliasing occurs).

◼ Practical FFT size: 𝑁 = 2 log2 𝐵+𝐿

◼ We can only send B samples at a time to the output stream... What to do with the rest?

B: Block size
L: IR size
N: FFT size

B N

N
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3. Overlap-Add & Overlap-Save

B: Block size
L: IR size
N: FFT size

N

B

L

Zero-padding

Zero-padding

x[n]

h[n]

y[n]

N

Can be sent now Remainder
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3. Overlap-Add & Overlap-Save

Preparation

Zero-pad the IR to the target length N

Take the FFT of the padded IR and store it

Initialize an empty buffer of size N

B: Block size
L: IR size
N: FFT size

Overlap-Add (OLA)

1. Zero-pad the block to the target length N

2. Perform the frequency-domain convolution*

3. Add the entire convolution result to the buffer

4. Send the first B samples of the buffer to the output stream

5. Clear those samples and shift the buffer 

Overlap-Save (OLS)

1. Shift the buffer

2. Copy the block to the last B samples of the buffer

3. Perform the frequency-domain convolution*

4. Send the last B samples of the convolution result 
to the output stream, discard the rest

*
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3. Overlap-Add & Overlap-Save

Size of the IR (samples)
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It’s O(N)?

OLS Benchmark
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3. Overlap-Add & Overlap-Save

Size of the IR (samples)

◼ OLA and OLS are O(logN) if L ≤ B

◼ Solution: Latency (process multiple blocks together, increasing the effective block size)

◼ Ideally, accumulate 
𝐿

𝐵
 blocks before performing the convolution

◼ Without latency, only good for very short IRs (≤ 𝐵)

B: Block size
L: IR size
N: FFT size

OLS Benchmark with maximum latency
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4. Uniform Partitions

◼ 1970s: Research is focused on beating the Cooley-Tuckey (radix-2) FFT

◼ OLA/OLS + latency remains the practical solution for frequency-domain convolution

◼ ‘Partitioning’ initially refers to splitting the input into blocks (enabling real-time processing)

◼ 1980’s: We begin partitioning the impulse response as well:
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4. Uniform Partitions

◼ It also works in the Frequency-Domain.

◼ A uniform partition scheme is described by two parameters:

◆ Part Size P: The length of the chunks in samples.

◆ Multiplicity M: The number of parts.

◼ For an IR of size L, we want 𝑷 ∙ 𝑴 > 𝑳

Is it better to do few big convolutions, or many small convolutions?
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4. Uniform Partitions

Preparation

Decide a partition scheme [P, M] 

Split the IR into chunks of size P

Zero-pad each chunk to size N = 2P

Compute and store the FFT of each padded chunk

Processing

1. Zero-pad the block to the target length N = 2P

2. Compute its FFT & store in a frequency-domain delay line

3. Multiply each IR chunk 𝐻𝑛 with the spectrum of block 𝑏𝑛

4. Sum all the convolutions to get the frequency-domain result

5. Take the IFFT of the sum to get the time-domain result

6. Send the first B samples and manage the remainder using OLA

By doing the sum in the frequency 
domain, we only need one FFT and 
one IFFT per block.

‘Uniform Convolver’
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4. Uniform Partitions

◼ 𝐶𝐹𝐹𝑇(N) = 𝑘0𝑁 log2 𝑁  → cost of computing the FFT of N samples.

◼ 𝐶𝐶𝑀𝐴(N) = 𝑘1𝑁 → cost of N complex multiply-adds.

◼ For an IR of size L and a partition scheme [P,M] the total cost* of the convolution is approx.:

𝐶 = 2×𝐶𝐹𝐹𝑇(N) + 𝑀×𝐶𝐶𝑀𝐴(N)

𝐶 = 2𝑘0𝑁 log2 𝑁 + 𝑀𝑘1𝑁

𝐶 = 2𝑘02𝑃 log2 2𝑃 +
𝐿

𝑃
𝑘12𝑃

𝐶 = 4𝑘0𝑃 log2 2𝑃 + 2𝑘1𝐿

Hence, we should use the smallest part size possible (P=B in practice). 

This means many small convolutions are better than few large ones.

*Ignoring copy/shift operations and assuming we use OLS

B: Block size
L: IR size
P: Part size
N: FFT size (2P)
M: Multiplicity (L/P)
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4. Uniform Partitions

◼ Let’s introduce latency: P = 1 + 𝑇 𝐵, where T is the latency in blocks*

◼ Collect 1 + 𝑇 =
𝑃

𝐵
 blocks at time and convolve them all at once.

◼ From before, the total cost of the convolution is approx.:

𝐶 = 4𝑘0𝑃 log2 2𝑃 + 2𝑘1𝐿

But we only need to compute it once every 
𝑃

𝐵
 blocks, so the average cost per block is:

ҧ𝐶 =
𝐶

ൗ𝑃
𝐵

= 4𝑘0𝐵 log2 2𝑃 + 2𝑘1𝐵
𝐿

𝑃

And the average cost per sample is:

Ӗ𝐶 =
ҧ𝐶

𝐵
= 4𝑘0 log2 2𝑃 + 2𝑘1

𝐿

𝑃

*(1+T) should be a power of 2, such that P & N are also powers of 2.

B: Block size
L: IR size
T: Latency
P: Part Size
N: FFT size (2P)
M: Multiplicity (L/P)
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4. Uniform Partitions

◼ Any amount of latency helps if 𝐿 >  4
𝑘0

𝑘1
𝐵 

◼ While it reduces the average CPU load, the peak load is still important.

◼ With long IRs, peaks can result in frame drops.

Block #
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4. Uniform Partitions

Without latency, only viable for medium IRs (< 128𝐵)

Size of the IR (samples)
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5. Non-Uniform Partitions

1990s: Convolution reverb is in demand -> Need to handle much longer IRs in real-time

Sony DRE-S777 : First convolution reverb hardware
Release Date/Price: 1999, £5870

Max IR length: 5.5 seconds
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5. Non-Uniform Partitions

Egelmeers & Sommen (1994), Gardner (1995)

Note: The outputs of later sub-filter stages are not needed right away.

→ They can accommodate more latency without actually delaying the output

→ With more latency, they can handle bigger convolutions

→ Hence the part size can grow as more sub-filters are added



◼ Each sub-filter must complete its convolution before the result is required for the final sum.

◼ Therefore, the time taken to accumulate enough blocks cannot exceed the offset.

◼ The latest block received does not count: it’s accumulated in the same cycle period it’s used in.

𝑃 < 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝐵

0 < 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝐵 − 𝑃
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5. Non-Uniform Partitions

Clearance constraint

“Clearance”

B: Block size
P: Part Size



25

5. Non-Uniform Partitions

◼ In theory, the ‘best’ partition is (1,2,4,8,16,32…): grow the part size as fast as possible while enforcing 
zero-clearance. This is impractical and only optimal for specific IR sizes.

◼ Gardner (1995): (1,1,2,2,4,4,8,8,…) + “scheduling”, more practical but not perfect

◼ Garcia (2002): Sub-filters of the same size require the same FFT & IFFT operations. Hence, it’s more 
efficient to group them together as uniform partitions:

𝑃0, 𝑀0 𝑃1, 𝑀1 𝑃2, 𝑀2
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Frequency-Domain Convolution

The non-uniformity lets us accumulate blocks (latency) without the typical downsides (delay).
By itself, It doesn’t solve the problem of load peaks.

1, 𝑀0

4, 𝑀2

2, 𝑀1

8, 𝑀3
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5. Non-Uniform Partitions

Solution: multi-threading

◼ The audio thread accumulates and reads blocks, 
and can handle lightweight, critical convolutions 
(e.g. the first stage 𝑃0 = 𝐵)

◼ The later, big convolutions are computed on 
separate threads

◼ As long as they have enough clearance, large 
sub-filters will finish their work in time.

◼ We can always increase the minimum clearance 
to ensure there’s spare time.
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Frequency-Domain Convolution

Large convolutions have a lot more time than before.
Instead of just waiting for blocks, some work can be done.

Asynchronous processing 
(with generous clearances)

1, 𝑀0

4, 𝑀2

2, 𝑀1

8, 𝑀3
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5. Non-Uniform Partitions

◼ Wefers (2012): Generate all valid partitions & find the solution that minimizes the average CPU load.

◼ For cost estimation, assume each uniform sub-filter is computed on its own thread. 

◼ Do this for various IR Lengths and block sizes to create look-up tables.

→ for IRs below 525000 samples, the optimal partition always had:

◼ At most four different part sizes

◼ Part sizes ≤ 65536

◼ Multiplicities ≤ 16

→ We only need 4 uniform sub-filters for most IRs.

→ Approx. twice as fast as Gardner and more practical.



30

5. Non-Uniform Partitions

Preparation

Find optimal NUP that satisfies our three 

constraints.

Initialize four uniform sub-filters with 

corresponding chunks of the IR.

Processing

1. Save incoming block in the input buffer

2. Whenever 
𝑃𝑛

𝐵
 blocks have been accumulated, 

• Compute the convolution of the uniform sub-filter 𝑃𝑛 𝑀𝑛

• Sum the result in the output buffer

3. Send B samples from the output buffer to the output stream & clear them

4. Update buffer positions

Accumulate blocks

Uniform sub-filters

Combine partial outputs

B: Block size
P: Part Size
M: Multiplicity
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5. Non-Uniform Partitions

It finally looks logarithmic, but… 
Benchmarks only show the average CPU time.

Size of the IR (samples) Size of the IR (samples)
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Synchronous processing (single thread)
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5. Non-Uniform Partitions

When all the filters are computed on the audio thread, the peak load can become a bottleneck:
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5. Non-Uniform Partitions

Audio
Thread

Background 
Thread #1

Background 
Thread #2

Background 
Thread #3
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5. Non-Uniform Partitions

Size of the IR (samples) Size of the IR (samples)
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Asynchronous processing (audio thread + 3 background thread)
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Conclusion

◼ TDC still best for very short IRs (𝐿 ≤ 32)

◼ OLS and OLA by themselves are only useful for 
specific scenarios (32 < 𝐿 ≤ 𝐵 or high latency)

◼ Uniform Partitions are much better and should 
be able to handle most cases (B < 𝐿 ≤ 20𝐵), 
even with zero-latency.

◼ Non-Uniform Partitions can handle long IRs   
(20B < 𝐿 ≤ 500𝐵). They can be implemented as 
multiple ‘Uniform Stages’ in parallel.

◼ NUPs with additional background threads can 
handle very long IRs (𝐿 > 500𝐵)

Summary as a decision tree
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Sources and resources

◼ Stockham (1966) – High-speed convolution and correlation

◼ Gardner (1995) – Efficient convolution without input-output delay

◼ Battenberg & Avizienis (2011) – Implementing real-time partitioned convolution algorithms on 

conventional operating systems 

◼ Wefers & Vorlander (2012) - Optimal filter partitions for non-uniformly partitioned convolution

◼ Wefers (2015) - Partitioned convolution algorithms for real-time auralization

Must-Watch Must-Read

https://www.youtube.com/watch?v=nmgFG7PUHfo
https://www.youtube.com/watch?v=yYEMxqreA10
https://www.youtube.com/watch?v=h7apO7q16V0
https://www.youtube.com/watch?v=spUNpyF58BY

https://ethw.org/Oral-History:James_W._Cooley

https://www.youtube.com/watch?v=nmgFG7PUHfo
https://www.youtube.com/watch?v=yYEMxqreA10
https://www.youtube.com/watch?v=h7apO7q16V0
https://www.youtube.com/watch?v=spUNpyF58BY
https://ethw.org/Oral-History:James_W._Cooley
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Thank you!
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2. Fourier Transform (DFT & FFT)

Lagrange, Clairaut, et. al.

◼ Trigonometric series

◼ Discretization

Gauss

◼ Already using DFT (& FFT!)

◼ Doesn’t publish this work

Fourier

◼ Solves the heat equation

◼ Fourier series and theorem

Euler

◼ Power series

◼ 𝑒𝑖θ = cos θ + 𝑖 sin θ

1740 1750-1770 1800-1805 1807-1822
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FFT Implementations

Frequency-Domain Convolution

FFTW IPP MKL In-House?

Pros Popular, well documented
Optimized for 

intel chips
Fine control

Cons
Expensive license ($7,500),

Rarely updated
Only for intel 

chips
Time-Consuming,

Risky

https://github.com/project-gemmi/benchmarking-fft/
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1. Introduction

This is always O(N) This is O(logN) if irSize ≤ blockSize

Size of the IR (samples)
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Under certain conditions, FDC can be more efficient than TDC for the same result.
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Frequency-Domain Convolution

Peak and Average CPU load for 

Uniform Partitions

(Estimated)
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5. Non-Uniform Partitions

NUPs offer many degrees of freedom, but there are some constraints:

Constraint #1: Latency

◼ To extract the most performance, each sub-filter operates at maximum latency: T =
𝑃

𝐵
− 1

◼ i.e. Accumulate blocks until they fill up the part size.

◼ The first sub-filter must have part size 𝑃0 = 𝐵 to avoid adding actual latency.

Constraint #2: FFT and Part Size

◼ For each sub-filter, the FFT size N is twice the part size P.

◼ Assuming the block size B is a power of 2 (32, 64, 128, etc),

◼ All part sizes must be in the form 𝑃 = 2𝑛𝐵 to guarantee that N is a power of 2 and a multiple of B.

B: Block size
T: Latency
P: Part Size
N: FFT size (2P)
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Frequency-Domain Convolution: Non-Uniform Partitions

Clearance (Wefers, 2012) 

• A sub-filter with positive clearance has spare time to process the convolution.

• With zero-clearance, it must fit the processing within exactly 
𝑃

𝐵
 processing cycles

• With negative clearance, it’s impossible to compute in time (‘non-causal”)
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Frequency-Domain Convolution

Sync Async

Clearance  
constraint

Zero-Clearance Clearance ∝ P

Pros Guaranteed output Can handle very long IRs

Cons Problematic load peaks 
for IRs > 1s

Output not guaranteed

Battenberg & Avizienis (2011)

“Ultimately when there are more threads than cores in the system, the responsibility for 

scheduling the threads falls onto the operating system, which can only do so well given that 

it has very limited knowledge about the relationships and dependencies between threads.”
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Frequency-Domain Convolution

Multi-tap delay / sparse FIR 
implemented as a TDC
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Frequency-Domain Convolution

Convolution Reverb
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