

Embedded Linux Audio

Hobby Projects… … and professional products

© Ableton, KORG, Melbourne Instruments

Hobby vs Industrial

“ Why canʼt I just use e.g. Raspberry Pi OS? “

● Power-off safety

● Easy & robust update system for end users

● Boot time and size optimization

● Reproducible builds

● Support other HW platforms

Past talks ADC16 & ADC19

Elk Audio OS

https://www.elk.audio/

In the meantime…

Major changes in JUCE (esp. CMake support)

Suggested solutions not supported anymore

New versions of Yocto & new tools in the ecosystem

Yocto / OpenEmbedded

https://www.yoctoproject.org/

“It’s not an embedded Linux distribution,
it creates a custom one for you.”

Industry-standard tool to create a Linux BSP Board Support Package)

(simpler but less powerful alternative: Buildroot)

https://www.yoctoproject.org/

What you get / 1

“Targetˮ image:

● Bootloader

● Kernel & Device Tree

● Root filesystem

○ Your selection of Linux standard components

○ Libraries & products specific for your product

What you get / 2

● Cross-compiling SDK

● Multiple configurable images (development, production, etc)

● QEMU targets for automated testing

● License manifesto for all the components

How you get it / 1

By writing Bitbake recipes:

Think like Makefiles,
at one extra layer of abstraction:

● Where to fetch sources
● Apply patches
● Specific build flags
● Installation for your root fs

Not only for applications, also:
scripts, system services, user config…

How to get it / 2

By creating OpenEmbedded Layers:

● Collection of recipes and higher-level config files

● Many already available and maintained:

○ Open Embedded Layers Index

And creating target images by choosing packages from layers

http://layers.openembedded.org/

Layers for audio projects

meta-multimedia part of the default openembedded-core,
 for generic audio playback applications

meta-musicians collections of music-production recipes DAWs,
 plugins, etc.) typically used in Desktop Audio Linux

meta-elk HW-agnostic parts of Elk, with focus on headless devices
 running audio plugins on RT Xenomai kernels

https://layers.openembedded.org/layerindex/branch/kirkstone/layer/meta-multimedia/
https://github.com/schnitzeltony/meta-musicians
https://github.com/elk-audio/meta-elk

Putting layers together

Managing multiple nested Git repos for each layer
+ project configuration files

KAS is a recent tool by Siemens that makes the job easier

Example: Elk Audio OS image for Raspberry Pi 4

https://github.com/elk-audio/elk-audio-kas-configs

https://github.com/siemens/kas
https://github.com/elk-audio/elk-audio-kas-configs

Example: Elk for RPi4
HW-independent layers
(shared between multiple architectures)

“Productˮ layer:
top-level application

“Machineˮ layers:
HW-specific support (kernel etc)

Adding your JUCE plugin

Used to be a little difficult,
especially cross-compilation setup and headless support

Much easier now with recent JUCE & CMake support!

Yocto support for JUCE added in latest Elk Audio OS SDK
(same recipe could be used without Elk)

… very simple, just add in your recipe inherit juce
And thatʼs it!

https://elk-audio.github.io/elk-docs/html/embedded/building_plugins_for_elk.html

JUCE plugins caveats

● Only for CMake-based projects (no Projucer)

● Only VST3 targets (no standalone)

● Only headless plugins GUI needs to be external process)

● Some system resources might be in different locations

Advanced Topics: swupdate

Over-the-Air and USB updates

Robust to power-off at any time

Use a redundant partition scheme

meta-swupdate

https://github.com/sbabic/meta-swupdate

Advanced Topics: tbot

https://tbot.tools/

Automated CI tool to deploy and run tests of various sorts
on target HW devices connected to a build server

Even bootloader & real-audio tests!

https://tbot.tools/

The End!

Questions?
stefano@elk.audio

