ADC+

B SQUEEZE JUCE AND BOTTLE I
>/ INTO EMBEDDED DEVICES
@7 ND MORE

STEFANO ZAMBON

Embedded Linux Audio

Hobby Projects... ... and professional products

1
)
- e gy L1111
(CL)]4 g

RIS z
T R
s uuuutij‘HHJr ¥ E | Y
' g 5 AR .
a 3 E 1“3 Ll ‘ _ =S

Ableton, KORG, Melbourne Instruments

Hobby vs Industrial

“Why can't | just use e.g. Raspberry Pi OS? “

e Power-off safety

e Easy & robust update system for end users
e Boot time and size optimization

e Reproducible builds

e Support other HW platforms

Past talks (ADC16 & ADC19)

Expand your audio application fo the world of Embedded Linux ADCI16.

Felipe Tonello

-
ADC19 Deploying plug-ins on hardware using open-source Elk Audio OS :lk

Felipe Ferreri Tonello - ROLI Ltd.
Audio Developer Conference, London
November 2016

Use the open-source Elk Audio OS to deplox'll’
plugins on hardware with minimal effort

v

Stefano Zambon (& (o]
Ilias Bergstrom Senior Sw Engineer
Gustav Andersson Senior Sw Engineer

Elk Audio OS

https://www.elk.audio/

In the meantime...
Major changes in JUCE (esp. CMake support)
Suggested solutions not supported anymore

New versions of Yocto & new tools in the ecosystem

Yocto / OpenEmbedded yocto

PROJECT

“It’'s not an embedded Linux distribution,
it creates a custom one for you.”

Industry-standard tool to create a Linux BSP (Board Support Package)

(simpler but less powerful alternative: Buildroot)

https://www.yoctoproject.org/

Upstream Openembedded Architecture Workflow

Project
Releases

Local SCMs
Projects (optional) Upstream Source Output Packages

Metadata/Inputs Process steps (tasks)
Build system . Output Image Data

Source Mirror(s)

User
Configuration Source

Fetching
Metadata Generation

Output
(.bb + patches Analysis for

. Patch package
Machine (BSP) Application | splitting plus :
Configuration package Generation

elationships

Package Feeds

Image SDK

Generation Generation

Policy onfiguratio

Configuration / Compile /

Autoreconf Generation
as needed

Application
Images Development
SDK

What you get /1
“Target” image:

e Bootloader
e Kernel & Device Tree
e Root filesystem
o Your selection of Linux standard components

o Libraries & products specific for your product

What you get / 2

e Cross-compiling SDK
e Multiple configurable images (development, production, etc)
e QEMU targets for automated testing

e License manifesto for all the components

How you getit/1

By writing Bitbake recipes:

©® N LA WN R

W W WwWNNNNNNNNRNRNIERRRR RHB B B 2 2
WNRPRSO®-NOOUS_WNRS®O®NOOULHNWNRSS

SUMMARY = "MDA VST3 plugins for Linux"
HOMEPAGE = "http://mda.smartelectronix.com/"

LICENSE = "GPLv3"
LIC_FILES_CHKSUM = "file://COPYING;md5=e494652534af377a713df3d9dec60cb"

PV = "0.1.0+${SRCREV}"

SRC_URI = "\
gitsm://github.com/elk-audio/mda-vst3;protocol=https;nobranch=1 \
file://0001-Added-DNDEBUG-compile-definition.patch \
file://0001-Fix-for-gcc-10.patch \
file://0002-Removed-auto-strip-with-Release-build-as-Yocto-takes.patch \

SRCREV = "5b970765c49480880e6c945de7baf040ff703c50"
S = "${WORKDIR}/git"
inherit cmake
OECMAKE_C_FLAGS_RELEASE += "-03"
OECMAKE_CXX_FLAGS_RELEASE += "-03"
EXTRA_OECMAKE = "-DCMAKE_BUILD_TYPE=Release"
MDA_PLUGIN_DIR = "/home/mind/plugins/mda-vst3"
do_install() {
install -d ${D}${MDA_PLUGIN_DIR}/mda.vst3/Contents/${TARGET_ARCH}-linux
cp "${WORKDIR}/build/VST3/Release/mda.vst3/Contents/x86_64-1inux/mda.so" "${D}${MDA_PLUGIN_DIR}/

}

FILES_${PN} += "${MDA_PLUGIN_DIR}"
FILES_${PN} += "${MDA_PLUGIN_DIR}/*"

Think like Makefiles,
at one extra layer of abstraction:

Where to fetch sources
Apply patches

Specific build flags
Installation for your root fs

Not only for applications, also:
scripts, system services, user config...

How to getit/ 2

By creating OpenEmbedded Layers:
e Collection of recipes and higher-level config files
e Many already available and maintained:

©)

And creating target images by choosing packages from layers

http://layers.openembedded.org/

Layers for audio projects

part of the default openembedded-core,
for generic audio playback applications

collections of music-production recipes (DAWS,
plugins, etc.) typically used in Desktop Audio Linux

HW-agnostic parts of Elk, with focus on headless devices
running audio plugins on RT Xenomai kernels

https://layers.openembedded.org/layerindex/branch/kirkstone/layer/meta-multimedia/
https://github.com/schnitzeltony/meta-musicians
https://github.com/elk-audio/meta-elk

Putting layers together

Managing multiple nested Git repos for each layer
+ project configuration files

is a recent tool by Siemens that makes the job easier

Example: Elk Audio OS image for Raspberry Pi 4

https://github.com/siemens/kas
https://github.com/elk-audio/elk-audio-kas-configs

W 00 N O UL S W N

Example: Elk for RPi4

KAS project file

header: HW-independent layers

version: 14

includes: (shared between multiple architectures)

- common/elk-audio-0s-v1.0.0.yml

machine: raspberrypi4-64
target: elkpi-audio-os-image

repds:
meta-elkpi:
url: https://github.com/elk-audio/meta-elkpi.git
commit: a262b989b6325250c41073fa7113df1b7364a2d5
Wa—elkni
eta-raspberrypi-elk:
url: https://github.com/elk-audio/meta-raspberrypi-elk.gi
commit: 1@cabcae920cd879fel73ca9f05156f1c9183521
path: layers/meta-raspberrypi-elk
meta-raspberrypi:
url: https://github.com/agherzan/meta-raspberrypi.git
commit: 2a06e4e84b041c90073a4524581548c9b5e57362

“Machine” layers:
path: layers/meta-raspberrypi > oo
- HW-specific support (kernel etc)

local_conf_header:
elkpi-conf: |
SWU_VERSION = "1.0.0"
RPI_KERNEL_DEVICETREE:remove = “broadcom/bcm2711-rpi-400.dtb broadcom/bcm2711-rpi-cm4.dtb"
RPI_KERNEL_DEVICETREE_OVERLAYS:remove = "overlays/vc4-kms-dsi-7inch.dtbo"
ENABLE_I2C = "1"

Adding your JUCE plugin

Used to be a little difficult,
especially cross-compilation setup and headless support

Much easier now with recent JUCE & CMake support!

Yocto support for JUCE added in
(same recipe could be used without Elk)

... very simple, just add in your recipe inherit juce
And that’s it!

https://elk-audio.github.io/elk-docs/html/embedded/building_plugins_for_elk.html

JUCE plugins caveats

e Only for CMake-based projects (no Projucer)
e Only VST3 targets (no standalone)
e Only headless plugins (GUI needs to be external process)

e Some system resources might be in different locations

Advanced Topics: swupdate
Over-the-Air and USB updates
Robust to power-off at any time

Use a redundant partition scheme

https://github.com/sbabic/meta-swupdate

Advanced Topics: tbot

https://tbot.tools/

Automated ClI tool to deploy and run tests of various sorts
on target HW devices connected to a build server

Even bootloader & real-audio tests!

https://tbot.tools/

The End!

Questions?

N2

stefano@elk.audio

