
Workshop | November 2024

Neural Audio

gpu.audio

gpu.audio 2

• Open-Source deep learning
guitar amp and pedal modeler

• Available as a VST3/AU plugin for
Mac/Win as well as a standalone app

• Homepage:
https://www.neuralampmodeler.com/

• Author: Steven Atkinson

gpu.audio 3

Modeling

• Guitar amp is a highly non-linear device

• Emulation with conventional modeling
methods is complicated due
to non-linearities and for each
particular amp model should be
designed mostly from scratch

• Good fit for the ML approach

gpu.audio 4

Neural Amp Modeler

Captures amp with
the specific settings
(knob positions)

This is why there is no gain
knob in the interface

gpu.audio 5

(DSP)

Tone Stack
(EQ) Cabinet IR DC Blocker

(HP Filter) Output Gain

Gain
Staging

Noise Gate
Trigger NAM Core Noise Gate

Gain
Plugin input

Plugin output

gpu.audio 6gpu.audio 6

Overview

Many layers that can be used as desired

Low latency

High performance DSP

Cross-platform

gpu.audio 7

Schematics

(audio processing engine) Processor API (interfaces for creating audio processors)

DSP Components LibraryEngine API (interfaces for using audio processors)

Low-latency scheduler

Implementation of routines provided by APIs

Proprietary code, provided as a library

Open header library

Provides necessary tools for using your own
audio effects for processing

Uses GPU Audio engine

Open header library

Provides necessary tools for creating
your own audio effects

Uses GPU Audio engine

Contains various already implemented filters, partitioned
convolution, fft, Neural Network Building Blocks

Independent of GPU Audio

Can be used when writing your own audio effects

gpu.audio 8

capabilities

Write your code once, and watch as it automatically compiles and deploys seamlessly across multiple platforms

Common device-side
C++ style language

• Syncthreads, shared
memory, warp
communication, etc

• Cache memory operations

• Thread management

Unified CPU-side
interfaces

• Initialization

• Compute Graph Setup

• Port Management

• Memory Management

• Parameter passing

gpu.audio 9

Entities

*internally it's a special case of DAG

GPU Audio

• Scheduler

• Memory Management

• Graph Setup
and Validation

• Graph Launcher

Graph Launcher Processing Graph Processor

• Instantiation
of Processors

• Creation
of Processing Graphs

• Data Transfer Control

• Synchronous and
Asynchronous Launch

• The Processing Graph
holds multiple
processors and their
connections (ports)

• Determines an ideal
way of scheduling the
graph on the respective
hardware, optimizing
for number of GPU
launches, temporary
memory requirements,
and latency

• Core processing
functionality of a
processor, split into task,
blocks, and threads
running on the GPU

• Parameter passing
control

• Memory management
and transfer as needed

• Hints for the gpu audio
engine about processing
characteristics

gpu.audio 10

quick info

// dynamic library interface
ErrorCode
CreateModuleInfoProvider_v2(...);
ErrorCode
DeleteModuleInfoProvider_v2(..);

ErrorCode
CreateDeviceCodeProvider_v2(...);
ErrorCode
DeleteDeviceCodeProvider_v2(...);

ErrorCode CreateModule_v2(...);
ErrorCode DeleteModule_v2(...);

class ModuleInfoProvider {
public:
ErrorCode GetSupportPlatformInfo(...);
ErrorCode GetModuleInfo(...);
ErrorCode GetProcessorExecutionInfo(...);

};

class DeviceCodeProvider {
public:
ErrorCode GetDeviceCode(...);

};

class Module {
public:
ErrorCode CreateProcessor(...);
ErrorCode DeleteProcessor(...);

};

gpu.audio 11

quick info

class MemoryManager{
public:
GpuMemoryPointer AllocateGpuMemory(...);

CpuMemoryPointerAllocatePinnedCpuMemory(.
..);

void MemCpyCpuToGpu(...) ;
void MemCpyCpuToGpu(...);

Future MemCpyCpuToGpuAsync(...);
Future MemCpyCpuToGpuAsync(...);
}

class Processor {
public:

ErrorCode SetData(...);

ErrorCode GetData(...);

ErrorCode GetInputPort(...) ;

ErrorCode OnBlueprintRebuild(...);

ErrorCode PrepareForProcess(...);

ErrorCode PrepareChunk(...);

void OnProcessingEnd(...);

}

class PortFactory{
public:
OutputPortPointer
CreateDataPort(...);
}

gpu.audio 12

Models

Convnet

• Simple MLP with multiple layers
working on current and previous
inpu

LSTM Wavenet

• Long short-term memory
implementations

• Two hidden layers

• Latest version of the model using
dilated convolution to combine
previous input and data with
current inputs

• 2x 10 dilated convolution layers

Three different implementations

gpu.audio 13

Wavenet

Van Den Oord, Aaron,
et al. "Wavenet:
A generative model for
raw audio."
arXiv preprint
arXiv:1609.03499 12
(2016)

gpu.audio 14

Process:

Input

Output

0

data

head
headdata

head
Layer Array Layer Array

gpu.audio 15

Layer Array

Process:

Input

Layer
data

head

conv
Layer Layer

data

headconv

gpu.audio 16

Layer

Process:

data

History
buffer

conv

de
lay

conv

conv

head

convInput

conv

+

activation

delay

delay

+

+
+

+

z_frag
+

gpu.audio 17

used today

Multichannel Delay Line
implemented as a ringbuffer

• Allowing to store arbitrary numbers
of channels in a history buffer and
access any data

• Implemented as matrix
multiplication with and without bias

• To implement dilated convolution

Conv1x1 Matrix Multiplication

gpu.audio 18

Multichannel Delay Line

template <uint32_t CHANNELS, uint32_t
RINGBUFFER_SIZE, typename TYPE>
class MultiChannelRingBuffer {
public:

template <class Fragment, class
Context>
Fragment LoadAsMatrixFragment(Context&

context, uint32_t cursor) const;

Vector<Channels, Type> Load(uint32_t
cursor) const;

template <class Context, class
Fragment>
void Store(Context& context, uint32_t

cursor, const Fragment& fragment);

void Store(uint32_t cursor, const
Vector<Channels, Type>& data) ;
};

• Implemented as a ringbuffer

• Size should be chosen such that sufficient history can loaded

• Size must be power of two to allow unit wrap around

• Cursor to capture current position

• Load and Store as vector or matrix

gpu.audio 19

Matrix

Matrix multiplication
the core of most
neural networks'
operations

Matrix multiplication
typically computed by
multiple threads
together

Matrix multiplication
mostly limited by
memory access
nowadays

Matrices can be
held in

• Most often a warp - SIMD
group of threads

• Can also be an entire
block of threads

• Our building blocks help
with memory transitions

• shared memory (efficient
on-chip memory,
accessible by all threads)

• or in registers =
fragments (distributed
across multiple threads)

gpu.audio 20

Matrix

template <class Context, uint32_t M,
uint32_t N, uint32_t K, typename
TYPE_INPUT, typename TYPE_ACCUMULATOR>
MatrixFragment Multiply(Context& context,
MatrixShared const& matA, MatrixFragment
const& matB, MatrixFragment const&
accumulator = {});

template <class Context, uint32_t M,
uint32_t N, uint32_t K, typename
TYPE_INPUT, typename TYPE_ACCUMULATOR>
MatrixFragment Multiply(Context& context,
MatrixShared const& matA, MatrixShared
const& matB, MatrixFragment const&
accumulator = {});

• Matrix A held in shared memory

• Matrix B held as a fragment or shared memory

• Matrix C held as a fragment

• Matrix C used as accumulator to add on top

C_inm

n

Am

k

k B

n

Cm

n

gpu.audio 21

Conv1x1

template <uint32_t M, uint32_t N,
uint32_t K, typename TYPE, bool BIAS =
false>
struct Conv1x1 {

void Set(Type const* weights, Type const*
bias);

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBShared const& matB, Smem&
temp, AccumulatorFragment const&
accumulator = {}) const;

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBFragment const& matB,
Smem& temp, AccumulatorFragment const&
accumulator = {}) const;

};

• Implemented as a matrix multiplication

• Bias given by a vector

• M.. number of output channels

• K.. number of input channels

• N.. number of samples

• Temporary shared memory provided
by the class to load
the matrix for multiplication

• Input data either in shared memory
or as fragments

gpu.audio 22

Conv1x1

template <uint32_t M, uint32_t N,
uint32_t K, typename TYPE, bool BIAS =
false>
struct Conv1x1 {

void Set(Type const* weights, Type const*
bias);

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBShared const& matB, Smem&
temp, AccumulatorFragment const&
accumulator = {}) const;

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBFragment const& matB,
Smem& temp, AccumulatorFragment const&
accumulator = {}) const;

};

• Implemented as a matrix multiplication

• Bias given by a vector

• M.. number of output channels

• K.. number of input channels

• N.. number of samples

• Temporary shared memory provided
by the class to load
the matrix for multiplication

• Input data either in shared memory
or as fragments

m

n

Input
Accumu
-lator

k

weight
matrix

m k

n

m Bias m

n

Result

gpu.audio 23

Quick Info

class DeviceProcessor {
public:
template <class Context>

__device_fct void init(Context context,
unsigned int bufferLength) __device_addr;
template <class Context>

__device_fct void my_process(Context
context, __device_addr ProcParam* params,
__device_addr TaskParam* task_params,
__device_addr float* __device_addr*
input, __device_addr float*
__device_addr* output) __device_addr;
};

• Every GPU processor only needs an init method. And can have an arbitrary number of process functions (name
does not matter)

• Keywords to annotate functions and pointers (needed for MAC compilation)

o __device_fct … a function on the GPU
o __device_addr … a pointer to GPU memory (also needed for member functions of device memory objects)
o __threadgroup_addr … a pointer to shared memory
o __thread_addr … a pointer to a local variable

• The Context class abstracts all platform dependent GPU code (thread id, synchronization, shfl, shared memory
etc).You typically want to pass the context into all functions you call.

• Every process method has the following additional parameters:

o ProcParam* params … custom parameter passed to all process methods of the processor
o TaskParam* task_params … specific parameters for individual process methods (in this case there is only

one)
o float** input … input port data (one pointer for each input port)
o float** output … output port data (one pointer for each output port)

// final declaration of the processor (in a cu file)
DeclareProcessorStep(DeviceProcessor, 0, my_process,
float, ProcParam, TaskParam);
DeclareProcessor(DeviceProcessor, 1);

• Each process method needs to be declared (and numbered). The input data type (float) and the
parameter types need to be specified.

• The final processor declaration only need to class name and the number of process functions
(1 in this case)

gpu.audio 24

Performance info

gpu.audio 25

Performance info

gpu.audio 26

Performance info

gpu.audio 27

Performance info

gpu.audio 28

Performance info

gpu.audio 29

in Jupyter environment

adc2024
8uWpaR36zwUXWDBcg4eeZGK5

adc2024.gpu.audio
Sign up credentials:

gpu.audio 30

and challenges to solve

• Target architecture is a Cartesian product of CPU_arch x GPU_arch x OS

• Different versions of compilers, CUDA, HIP, metal, etc

• Current amount of target profiles that we are using internally is ~300

• Implementation of toolchain and profile on-demand generation outside of GPU Audio internal
infrastructure

Result: public GPU Audio SDK Preview Release

gpu.audio 31gpu.audio

Q&A

