

# **GPU Powered** Neural Audio

Workshop | November 2024





gpu.audio

#### **Neural Amp Modeler**



- Open-Source deep learning
   guitar amp and pedal modeler
- Available as a VST3/AU plugin for Mac/Win as well as a standalone app
- Homepage: https://www.neuralampmodeler.com/
- Author: Steven Atkinson



#### **Guitar Amps Modeling**



- Guitar amp is a highly non-linear device
- Emulation with conventional modeling methods is complicated due to non-linearities and for each particular amp model should be designed mostly from scratch
- Good fit for the ML approach



### **Neural Amp Modeler Limitations**





Captures amp with the specific settings (knob positions)

This is why there is no gain knob in the interface

### NAM (DSP)





### **GPU Audio SDK Overview**



Cross-platform



Many layers that can be used as desired



Low latency



High performance DSP



### **GPU AUDIO SDK Workflow Schematics**

GPU Audio component (audio processing engine)

- Low-latency scheduler
- Implementation of routines provided by APIs
- Proprietary code, provided as a library



#### Processor API (interfaces for creating audio processors)

- Open header library
- Provides necessary tools for creating your own audio effects
- Uses GPU Audio engine

**Engine API** (interfaces for using audio processors)

- Open header library
- Provides necessary tools for using your own audio effects for processing
- Uses GPU Audio engine

#### **DSP Components Library**

- Contains various already implemented filters, partitioned convolution, fft, Neural Network Building Blocks
- Independent of GPU Audio
- Can be used when writing your own audio effects

#### gpu.audio

### **Cross-platform capabilities**





#### Unified CPU-side interfaces

- Initialization
- Compute Graph Setup
- Port Management
- Memory Management
- Parameter passing



#### Common device-side C++ style language

- Syncthreads, shared memory, warp communication, etc
- Cache memory operations
- Thread management



Write your code once, and watch as it automatically compiles and deploys seamlessly across multiple platforms

#### **Processor Launcher: Entities**



GPU Audio

- Scheduler
- Memory Management
- Graph Setup and Validation
- Graph Launcher



- Instantiation of Processors
- Creation
   of Processing Graphs
- Data Transfer Control
- Synchronous and Asynchronous Launch



#### Processing Graph

- The Processing Graph holds multiple processors and their connections (ports)
- Determines an ideal way of scheduling the graph on the respective hardware, optimizing for number of GPU launches, temporary memory requirements, and latency



#### Processor

- Core processing functionality of a processor, split into task, blocks, and threads running on the GPU
- Parameter passing control
- Memory management and transfer as needed
- Hints for the gpu audio engine about processing characteristics

### **Processor API quick info**



#### // dynamic library interface

ErrorCode CreateModuleInfoProvider\_v2(...); Functions for providing ErrorCode DeleteModuleInfoProvider\_v2(...); supported platforms

ErrorCode

| <pre>CreateDeviceCodeProvider_v2();</pre> | Fun |
|-------------------------------------------|-----|
| ErrorCode                                 | GPI |
| <pre>DeleteDeviceCodeProvider_v2();</pre> | pla |

ErrorCode CreateModule\_v2(...);
ErrorCode DeleteModule\_v2(...);

Functions for providing the GPU code for a specific Slatform

Functions for providing the GPU code for a specific platform

class DeviceCodeProvider {
public:
 ErrorCode GetDeviceCode(...);
};

Simple method to get the precompiled binary code for GPU execution. Compilation and setup taken care of by our build environment.

#### class Module {

public:

```
ErrorCode CreateProcessor(...);
ErrorCode DeleteProcessor(...);
};
```

Methods for creating a processor; typically, just new/delete on custom Processor class

#### class ModuleInfoProvider {

public:

```
ErrorCode GetSupportPlatformInfo(...);
ErrorCode GetModuleInfo(...);
ErrorCode GetProcessorExecutionInfo(...);
};
```

Methods to to get information about the supported platforms, module's version, and the GPU code entry functions. Most of them can be auto generated from simple meta data

gpu.audio

### **Processor API quick info**



 class Processor {
 Main interface to implement when creating your own processor

 public:
 Methods for passing custom parameters to processor

 ErrorCode SetData(...);
 Methods for passing custom parameters to processors (simple pass through)

 ErrorCode GetData(...);
 Method to connect input data to the processor (graph)

ErrorCode OnBlueprintRebuild(...); — Method to provide information about which

Method to provide information about which functions to execute on the GPU

Preparation function for reacting to new input data and providing parameters

for GPU execution

ErrorCode PrepareForProcess(...);

ErrorCode PrepareChunk(...);

void OnProcessingEnd(...); 
Optional callback for when
processing on the GPU is
completed.

CpuMemoryPointerAllocatePinnedCpuMemory(.
..);

void MemCpyCpuToGpu(...) ; void MemCpyCpuToGpu(...);

Future MemCpyCpuToGpuAsync(...);
Future MemCpyCpuToGpuAsync(...);

class PortFactory{
public:
 OutputPortPointer
CreateDataPort(...);
}

Provided to each new processor for generating output ports that can be used to connect to other processors or output buffers back to the DAW (or other destinations).

#### **NAM Models**



#### Convnet

 Simple MLP with multiple layers working on current and previous inpu

#### Three different implementations

#### LSTM

- Long short-term memory implementations
- Two hidden layers

#### Wavenet

3

- Latest version of the model using dilated convolution to combine previous input and data with current inputs
- 2x 10 dilated convolution layers

#### Wavenet



Van Den Oord, Aaron, et al. "Wavenet: **A generative model for raw audio."** arXiv preprint arXiv:1609.03499 12 (2016)



Figure 3: Visualization of a stack of *dilated* causal convolutional layers.

### Process: Top level





### **Process: Layer Array**





#### **Process: Layer**





### **GPU building blocks used today**



## Multichannel Delay Line implemented as a ringbuffer

 Allowing to store arbitrary numbers of channels in a history buffer and access any data

#### Conv1x1

 Implemented as matrix multiplication with and without bias

#### **Matrix Multiplication**

• To implement dilated convolution

#### **Multichannel Delay Line**



- Implemented as a ringbuffer
- Size should be chosen such that sufficient history can loaded
- Size must be power of two to allow unit wrap around
- Cursor to capture current position
- Load and Store as vector or matrix

template <uint32\_t CHANNELS, uint32\_t RINGBUFFER\_SIZE, typename TYPE> class MultiChannelRingBuffer { public:

template <class Fragment, class
Context>

Fragment LoadAsMatrixFragment(Context& context, uint32\_t cursor) const;

Vector<Channels, Type> Load(uint32\_t
cursor) const;

template <class Context, class
Fragment>
 void Store(Context& context, uint32\_t
cursor, const Fragment& fragment);

void Store(uint32\_t cursor, const Vector<Channels, Type>& data) ; };

#### Matrix



Matrix multiplication the core of most neural networks' operations Matrix multiplication typically computed by multiple threads together

- Most often a warp SIMD group of threads
- Can also be an entire block of threads

Matrix multiplication mostly limited by memory access nowadays

Our building blocks help
with memory transitions

#### Matrices can be held in

- shared memory (efficient on-chip memory, accessible by all threads)
- or in registers = fragments (distributed across multiple threads)

#### **Matrix Multiplication**





- Matrix A held in shared memory
- Matrix B held as a fragment or shared memory
- Matrix C held as a fragment
- Matrix C used as accumulator to add on top

template <class Context, uint32\_t M, uint32\_t N, uint32\_t K, typename TYPE\_INPUT, typename TYPE\_ACCUMULATOR> MatrixFragment Multiply(Context& context, MatrixShared const& matA, MatrixFragment const& matB, MatrixFragment const& accumulator = {});

template <class Context, uint32\_t M, uint32\_t N, uint32\_t K, typename TYPE\_INPUT, typename TYPE\_ACCUMULATOR> MatrixFragment Multiply(Context& context, MatrixShared const& matA, MatrixShared const& matB, MatrixFragment const& accumulator = {});

### Conv1x1





- Implemented as a matrix multiplication •
- Bias given by a vector
- M.. number of output channels
- K.. number of input channels
- N.. number of samples

- Temporary shared memory provided by the class to load the matrix for multiplication
- Input data either in shared memory or as fragments

template <uint32\_t M, uint32\_t N, uint32\_t K, typename TYPE, bool BIAS = false> struct Conv1x1 {

void Set(Type const\* weights, Type const\* bias);

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBShared const& matB, Smem&
temp, AccumulatorFragment const&
accumulator = {}) const;

#### template <class Context>

AccumulatorFragment Process(Context& context, MatrixBFragment const& matB, Smem& temp, AccumulatorFragment const& accumulator = {}) const;

#### Conv1x1



- Implemented as a matrix multiplication •
- Bias given by a vector
- M.. number of output channels
- K.. number of input channels
- N.. number of samples

- Temporary shared memory provided by the class to load the matrix for multiplication
- Input data either in shared memory or as fragments



template <uint32\_t M, uint32\_t N, uint32\_t K, typename TYPE, bool BIAS = false> struct Conv1x1 {

void Set(Type const\* weights, Type const\* bias);

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBShared const& matB, Smem&
temp, AccumulatorFragment const&
accumulator = {}) const;

#### template <class Context>

AccumulatorFragment Process(Context& context, MatrixBFragment const& matB, Smem& temp, AccumulatorFragment const& accumulator = {}) const;

};

#### **Device Execution Quick Info**



#### class DeviceProcessor {

public:

template <class Context>
\_\_device\_fct void init(Context context,
unsigned int bufferLength) \_\_device\_addr;
template <class Context>
\_\_device\_fct void my\_process(Context
context, \_\_device\_addr ProcParam\* params,
\_\_device\_addr TaskParam\* task\_params,
\_\_device\_addr float\* \_\_device\_addr\*
input, \_\_device\_addr float\*
\_\_device\_addr \* output) \_\_device\_addr;
};

- Every GPU processor only needs an init method. And can have an arbitrary number of process functions (name does not matter)
- Keywords to annotate functions and pointers (needed for MAC compilation)
  - \_\_device\_fct ... a function on the GPU
  - \_\_device\_addr ... a pointer to GPU memory (also needed for member functions of device memory objects)
  - \_\_threadgroup\_addr ... a pointer to shared memory
  - $\circ$  \_\_thread\_addr ... a pointer to a local variable
- The Context class abstracts all platform dependent GPU code (thread id, synchronization, shfl, shared memory etc). You typically want to pass the context into all functions you call.
- Every process method has the following additional parameters:
  - o ProcParam\* params ... custom parameter passed to all process methods of the processor
  - TaskParam\* task\_params ... specific parameters for individual process methods (in this case there is only one)
  - o float\*\* input ... input port data (one pointer for each input port)
  - float\*\* output ... output port data (one pointer for each output port)

// final declaration of the processor (in a cu file)
DeclareProcessorStep(DeviceProcessor, 0, my\_process,
float, ProcParam, TaskParam);
DeclareProcessor(DeviceProcessor, 1);

- Each process method needs to be declared (and numbered). The input data type (float) and the
  parameter types need to be specified.
- The final processor declaration only need to class name and the number of process functions (1 in this case)

### **Performance info NVIDIA 4090s**







gpu.audio

### **Performance info NVIDIA 4090s**







### Performance info Mac M2 Max





### Performance info Mac M2 Max

![](_page_26_Picture_1.jpeg)

![](_page_26_Figure_2.jpeg)

### Performance info Mac M2 Max

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_0.jpeg)

# Hands-on demo in Jupyter environment

## Sign up credentials:

### adc2024.gpu.audio

Username: adc2024 Password: 8uWpaR36zwUXWDBcg4eeZGK5

#### Future and challenges to solve

![](_page_29_Picture_1.jpeg)

- Target architecture is a Cartesian product of CPU\_arch x GPU\_arch x OS
- Different versions of compilers, CUDA, HIP, metal, etc
- Current amount of target profiles that we are using internally is ~300
- Implementation of toolchain and profile on-demand generation outside of GPU Audio internal infrastructure

### **Result: public GPU Audio SDK Preview Release**

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_3.jpeg)

gpu.audio