6Pl | ADC:

audio

GPU Powered
Neural Audio

Workshop | November 2024

gpu.audio

3

\

N\

Neural Amp Modeler aPU ‘ ADC24

audio

- Open-Source deep learning NEURAL AMP MODELER

guitar amp and pedal modeler
§ Input Gate Bass Middle Treble Output
. Avallab.le as a VST3/AU plugin for | 7 7 7 7z 7 =
Mac/Win as well as a standalone app \
. Homepage % 0.0dB -80.0 dB 5.0 5.0 5.0 0.0dB
https://www.neuralampmodeler.com/ - - |
EQ Normalize
- Author: Steven Atkinson <> 5150.nam X
'l'||"‘ B<> Select IR... X

gpu.audio 2

Guitar Amps Modeling aPU ‘ ADC24

audio
- Guitar amp is a highly non-linear device - NEURAL AMP MODELER
- Emulation with conventional modeling Input Gate Bass Middle Treble Output
methods is complicated due (‘ 7’ ((‘ (* ('
to non-linearities and for each \
particular amp model should be - oods -s00e 5.0 5.0 5.0 0.0d8
designed mostly from scratch - - |
(0] Normalize
- Good fit for the ML approach ~ A v
'|'||"' B<C> Select IR... >4

gpu.audio 3

Neural Amp Modeler Limitations EPL ‘ ADC24

audio

Captureg amp W.ith This is why there is no gain
i SpREifs SEifng: knob in the interface
(knob positions)

gpu.audio 4

NAM (DSP)

Plugin input Gain

Staging

ifll | ADCa
Ported to GPU
__, Noise Gate __ __, Noise Gate
Trigger Gain

l

Tone Stack

(EQ) — Cabinet IR

gpu.audio

Plugin output

DC Blocker __ Output Gain >

(HP Filter)

GPU Audio SDK Overview

5
[-]] Cross-platform

@ Many layers that can be used as desired

@ Low latency

m High performance DSP

GPU AUDIO SDK Workflow Schematics EPU ‘ ADCz4

audio
GPU Audio component (audio processing engine) Processor API (interfaces for creating audio processors)
— Low-latency scheduler — Open header library
— Implementation of routines provided by APIs — Provides necessary tools for creating

your own audio effects

— Proprietary code, provided as a library U G AR

p—

I E—a_a—h
Engine API (interfaces for using audio processors) DSP Components Library

— Open header library — Contains various already implemented filters, partitioned

, , convolution, fft, Neural Network Building Blocks
— Provides necessary tools for using your own
audio effects for processing — Independent of GPU Audio

— Uses GPU Audio engine — Can be used when writing your own audio effects

gpu.audio 7

Cross-platform capabilities ikl | ADCo4

audio

nified CPU-si o f
:ﬂerfe;c:s U-side Common device-side <
> C++ style language \
« Initialization b « Syncthreads, shared o
« Compute Graph Setup IR, WL audio
- > communication, etc .
oL EUEREIE: : + Cache memory operations 7
* MemoryManagement « Thread management //

» Parameter passing

gpu.audio :

Processor Launcher: Entities GPU ‘ ADC24

audio
L ESS—S—S—SS L ESSS—S—S—S—S.
GPU Audio [@' Graph Launcher Processing Graph Processor
 Scheduler * Instantiation The Processing Graph Core processing
- Memory Management of Processors holds multiple functionality of a
. Creation processors and their processor, split into task,
« Graph Setup connections (ports) blocks, and threads

of Processing Graphs

and Validation running on the GPU

« Data Transfer Control * Determines an ideal

* Graph Launcher way of scheduling the « Parameter passing
* Synchronous and graph on the respective control
Asynchronous Launch hardware, optimizing T
VB0 AIBEP &l EFLL and transfer as needed
launches, temporary
memory requirements, * Hints for the gpu audio
and latency engine about processing

characteristics

gpu.audio *internally it's a special case of DAG 9

Processor AP quick info aPU ‘ ADC24

audio

// dynamic library interface Simple method to get the

ErrorCode class DeviceCodeProvider { precompiled binary code
CreateModuleInfoProvider_v2(...); | Functions for providing public: for GPU execution.
ErrorCode information about the ErrorCode GetDeviceCode(...); Compilation and setup
DeleteModuleInfoProvider_v2(..); supported platforms Pe taken care of by our build
environment.
ErrorCode
CreateDeviceCodeProvider_v2(...); | Functions for providing the
ErrorCode GPU code for a specific
DeleteDeviceCodeProvider_v2(...); | platform class Module {
public: Methods for creating -
ErrorCode CreateModule_v2(...); Functions for providing the GPU ErrorCode CreateProcessor(...); | @Pprocessor iypically,just
ErrorCode DeleteModule_v2(...); code for a specific platform ErrorCode DeleteProcessor(...); new/delete on custom
}: Processor class

class ModuleInfoProvider {

public:
ErrorCode GetSupportPlatformInfo(...);
ErrorCode GetModuleInfo(...); Methods lo lo gel Informalion aboul the supporled p'alforms, module's version, and the GPU code enlry funclions
ErrorCode GetProcessorExecutionInfo(...): Most of them can be auto generated from simple meta data

}

gpu.audio 10

Processor API quick info
9 audm ‘ A[xz

__ Provided to each new processor for platform

class Processor { Main interface to implement when creating class MemoryManager{ independent memory management
public: your own processor public: ’
GpuMemoryPointer AllocateGpuMemory(...);
. Methods for passing custom parameters CpuMemoryPointerAllocatePinnedCpuMemory (.
ErrorCode SetData(...); — i processors (simple pass through) p) . d > ¥
ErrorCode Getbata(...); — Heale ot dot o e procesor
P grap void MemCpyCpuToGpu(...)
ErrorCode GetInputPort(...) ; void MemCpyCpuToGpu(...);
ethod] Future MemCpyCpuToGpuAsync(...);
: ; . __ Method to provide 5
ErrorCode OnBlueprintRebuild(...); information about which Future MemCpyCpuToGpuAsync(...);
functions to execute }
on the GPU
ErrorCode PrepareForProcess(...); Preparation function for

reacting to new input data
and providing parameters

ErrorCode PrepareChunk(...); for GPU execution

class PortFactory{ Provided to each new processor
public: for generating output ports that can be
void OnProcessingEnd(...); — Optional callback for when OutputPortPointer used to connect to other processors
processing on the GPU is CreateDataPort(...); or output buffers back to the DAW
} completed. } (or other destinations).

gpu.audio 11

NAM Models ikl | ADCo4

audio
Three different implementations
1 Convnet 2 LSTM 3 Wavenet
+ Simple MLP with multiple layers * Long short-term memory « Latest version of the model using
working on current and previous implementations dilated convolution to combine

previous input and data with

inpu « Two hidden layers current inputs

» 2x 10 dilated convolution layers

gpu.audio 12

Wavenet P | ADC24

audio

Output
Dilation = 8

Van Den Qord, Aaron, : O O O s - e i Y i ,, I g_ilcigenLiyer
) b . . - [} [} [} on:

et al. "Wavenet: rer - ' ST s S s ilati

A generative model for

O O T ' O O ' 3 V T 3 T V Hidden Layer
raw audio." Dilation = 2
arXiv preprint ‘ ‘ ‘
arXiv:1609.03499 12 O Q > Q | Hidden Layer
(2016) / / / ;
Input

Figure 3: Visualization of a stack of dilated causal convolutional layers.

gpu.audio K]

Process: Top level

data

gpu.audio

head

\ 4

Layer Array

data

head

A 4

A 4

Layer Array

LR

audio

head

| ADCo

\ 4

14

Process: Layer Array

Layer Array

gpu.audio

"

data — conv —

A\ 4

head

Layer

A 4

\ 4

Layer

il | ADCx

\ 4

A\ 4

Layer

— data

— conv —> head

15

Process: Layer P ‘ ADC24

audio

‘ conv N

History
buffer z_frag
— data —> = conv activation —» conv — + —»

[/ M
o

conv]

Dilated Convolution

\ 4
+
\ 4

— head

gpu.audio 16

GPU building blocks used today P ‘ ADC24

audio

Multichannel Delay Line

. . Matrix Multiplicati

implemented as a ringbuffer Convixi atrix Multiplication

* Allowing to store arbitrary numbers * Implemented as matrix * To implement dilated convolution
of channels in a history buffer and multiplication with and without bias

access any data

gpu.audio 17

Multichannel Delay Line

* Implemented as a ringbuffer

* Size should be chosen such that sufficient history can loaded
* Size must be power of two to allow unit wrap around

¢ Cursor to capture current position

* Load and Store as vector or matrix

gpu.audio

audm ‘ A[xz

<uint32_t CHANNELS, uint32_t
RINGBUFFER_SIZE, typename TYPE>
class MultiChannelRingBuffer {
public:

<class Fragment, class
Context>
Fragment LoadAsMatrixFragment(Context&
context, uint32_t cursor) const;

Vector<Channels, Type> Load(uint32_t
cursor) const;

<class Context, class
Fragment>
void Store(Context& context, uint32_t
cursor, const Fragment& fragment);

void Store(uint32_t cursor, const
Vector<Channels, Type>& data)

|3

18

Matrix

il | ADCx

Matrix multiplication
the core of most
neural networks'
operations

gpu.audio

Matrix multiplication

typically computed by
multiple threads
together

* Most often a warp - SIMD
group of threads

« Can also be an entire
block of threads

Matrix multiplication
mostly limited by
memory access
nowadays

¢ Our building blocks help
with memory transitions

Matrices can be
held in

« shared memory (efficient
on-chip memory,
accessible by all threads)

* orinregisters =
fragments (distributed
across multiple threads)

19

Matrix Multiplication
P audm ‘ A[X:z

n k n -
n : <cla§s Context, uint32_t M,
. - . uint32_t N, uint32_t K, typename
TYPE_INPUT, typename TYPE_ACCUMULATOR>
m C_in + m A X k B - m C MatrixFragment Multiply(Context& context,

MatrixShared const& matA, MatrixFragment
const& matB, MatrixFragment const&
accumulator = {});

« Matrix A held in shared memory <class Context, uint32_t M,
uint32_t N, uint32_t K, typename
 Matrix B held as a fragment or shared memory TYPE_INPUT, typename TYPE_ACCUMULATOR>
. MatrixFragment Multiply(Context& context,
* Matrix C held as a fragment MatrixShared const& matA, MatrixShared

const& matB, MatrixFragment const&

* Matrix C used as accumulator to add on top S

gpu.audio 20

Convix1

Multi channel sample buffer - potentially
direct input or intermediate layer output
(considered as data stream)

Single sample across all channels after
conv1x1,ls only influenced by the single
sample vector of the input at the same
time step

Single sample Current processing
across all channels window

* Implemented as a matrix multiplication

* Bias given by a vector
* M.. number of output channels
* K.. number of input channels

* N.. number of samples

gpu.audio

v

Current processing
window

Temporary shared memory provided
by the class to load
the matrix for multiplication

Input data either in shared memory
or as fragments

audm ‘ A[xz

<uint32_t M, uint32_t N,
uint32_t K, typename TYPE, bool BIAS =
false>
struct Convix1 {

void Set(Type const* weights, Type const*
bias);

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBShared const& matB, Smemé&
temp, AccumulatorFragment const&
accumulator = {}) const;

<class Context>
AccumulatorFragment Process(Context&
context, MatrixBFragment const& matB,
Smem& temp, AccumulatorFragment const&
accumulator = {}) const;

|3

21

Convix1

k n
n “—> <«—> n
+“—> +“—>
ut . =]
m umu == m| weight ¢ +nm Bias mm M ult

matrix
tor

Implemented as a matrix multiplication ¢
* Bias given by a vector

* M.. number of output channels
* K.. number of input channels

* N.. number of samples

gpu.audio

Bias is identical for each time step
and thus has identical columns

Temporary shared memory provided
by the class to load
the matrix for multiplication

Input data either in shared memory
or as fragments

audm ‘ A[X:z

<uint32_t M, uint32_t N,
uint32_t K, typename TYPE, bool BIAS =
false>
struct Convix1 {

void Set(Type const* weights, Type const*
bias);

template <class Context>
AccumulatorFragment Process(Context&
context, MatrixBShared const& matB, Smemé&
temp, AccumulatorFragment const&
accumulator = {}) const;

<class Context>
AccumulatorFragment Process(Context&
context, MatrixBFragment const& matB,
Smem& temp, AccumulatorFragment const&
accumulator = {}) const;

|3

22

Device Execution Quick Info

public:
template <class Context>
__device_fct void init(Context context,
unsigned int bufferLength) __device_addr;
template <class Context>

__device_fct void my_process(Context *
context, __device_addr ProcParam* params,
__device_addr TaskParam* task_params, .

__device_addr float* __device_addr*
input, __device_addr float*
__device_addr* output) __device_addr;

|3

(in
DeclareProcessorStep(DeviceProcessor, 9,
float, ProcParam, TaskParam);
DeclareProcessor(DeviceProcessor,

a cu file)
my_process,

1);

gpu.audio

audm ‘ A[X:z

Every GPU processor only needs an init method. And can have an arbitrary number of process functions (name
does not matter)

Keywords to annotate functions and pointers (needed for MAC compilation)

o
o
o
o

__device_fct ... a function on the GPU

__device_addr ... a pointer to GPU memory (also needed for member functions of device memory objects)
__threadgroup_addr ... a pointer to shared memory
__thread_addr ... a pointer to a local variable

The Context class abstracts all platform dependent GPU code (thread id, synchronization, shfl, shared memory
etc).You typically want to pass the context into all functions you call.

Every process method has the following additional parameters:

o
o

ProcParam* params ... custom parameter passed to all process methods of the processor

TaskParam* task_params ... specific parameters for individual process methods (in this case there is only
one)

float** input ... input port data (one pointer for each input port)

float** output ... output port data (one pointer for each output port)

® Each process method needs to be declared (and numbered). The input data type (float) and the
parameter types need to be specified.

® The final processor declaration only need to class name and the number of process functions
(1 in this case)

23

Performance info NVIDIA 4090s LRl | ADC24

audio

Execution of 96000 samples with a buffer size of 64
1,000

)
S
£
o
£

gpu.audio 24

Performance info NVIDIA 4090s

96000 samples 100 tracks

cputime [gputime

(2]
£
£
o
£
c
S
5
o
9]
X
o

0 R ess 0 e e
64/128 128/256 256/256 256/512

buffer size/threads

gpu.audio

audm ‘ A[X:z

96000 samples 100 tracks

cputime [gputime

123
£
£
o
£
<
kel
5
o
9]
x
)

64/128 128/256 256/256

buffer size/threads

256/512

25

Performance info Mac M2 Max LRl | ADC24

audio

Execution Time for 96000 Samples

B 64 samples 128 samples 256 samples

1000
500 I I
0
1 2 4 8

tracks

(2]
S
£
(0]
=
£
C
RS
S
3
[&]
(0]
x
(0]

gpu.audio

Performance info Mac M2 Max LRl ‘ ' \»'e”

audio

Average Call Latency

B 64 samples 128 samples 256 samples

1 2 4 8

tracks

[2]
S
£
>
o
C
[}
i)
o

gpu.audio

Performance info Mac M2 Max LRl ‘ ' \»'e”

audio

realtime ratio

[64 samples 128 samples 256 samples

e
=
©
—
©
£
=
©
o
—

8

tracks

gpu.audio

il | ADCx

Hands-on demo in Jupyter environment

adc2024.gpu.audio

Sign up credentials: Username: adc2024

Password: 8uWpaR36zwUXWDBcg4eeZGK5

gpu.audio 29

Future and challenges to solve aPU ‘ ADC24

audio

- Target architecture is a Cartesian product of CPU_arch x GPU_arch x 0S
- Different versions of compilers, CUDA, HIP, metal, etc
- Current amount of target profiles that we are using internally is ~300

- Implementation of toolchain and profile on-demand generation outside of GPU Audio internal
infrastructure

gpu.audio 30

aEuEiilTJI | ADC+

- QRA

gpu.audio

O Q @

