

@dynamic_cast

Practical
Machine Learning

ADC 2024

https://twitter.com/dynamic_cast

@dynamic_cast

Harriet Drury

Julia Läger

Sohyun Im

Pauline Nemchak

Anna Wszeborowska

dynamic-cast.github.io

https://twitter.com/dynamic_cast
https://dynamic-cast.github.io/

Presentation slides

https://github.com/dynamic-cast/ADC24/wiki

https://github.com/dynamic-cast/ADC24/wiki

Workshop goals

● Demonstrate a practical example of using machine learning in
an audio application

● Show you how to use an existing generative model and embed
it in an application

● Walk you through the stages of training your own machine
learning model

○ We will build a model which gives us the ability to control the generative model

Machine Learning

● Machine Learning is a field of Artificial Intelligence focusing on
algorithms which can make sense of the data you feed them.

● These models can learn from data, and find patterns in that
data without being explicitly programmed.

Generative models

● Generative - having the ability to generate new data

● Generative models try to understand the patterns and
structures of the data they were fed (dataset) and generate
new, yet similar examples

AI Music Generation

● Song generators

● Sample generators

● Instruments

AI Music Generation

● Sound generated in response to:
○ Text prompt - a description of what we want to hear

○ A set of features (style, mood, tempo, etc.)

○ No input - eg. hitting a button “generate”

○ Audio - providing a sound we want to transform

Style Transfer

● “Style Transfer is a technique in computer vision and graphics that
involves generating a new image by combining the content of one
image with the style of another image. The goal of style transfer is to
create an image that preserves the content of the original image while
applying the visual style of another image.ˮ 1

● In the audio domain: generating a new sound in the style of the training
data but preserving some characteristics of the input sound
○ Also called timbre transformation/transfer

[1] https://paperswithcode.com/task/style-transfer

Interacting with generative models in musical contexts

● What does a meaningful interaction with a generative model look like?
○ Mapping large parameter spaces

● Continuous exploration of interfaces which allow a sense of control
and agency

○ Are we generating content or playing an instrument?

○ Embodied interaction

Challenges associated with building generative models

● Dataset collection

● Training times
○ Small models which train fast tend to work with low sampling rates

● Access to computing power

● Technical literacy

● Ethical considerations
○ Copyright, bias, cost (financial, environmental, cultural), access to the technology

Part I Embedding a generative model in a music app

Demo

Overview of the app

● Desktop* app with web UI

● Audio is produced locally

● Uses Python and Flask

● Audio engine runs in a separate thread

Overview of the generative model

In the app we use RAVE (Realtime Audio Variational autoEncoder)

● Developed at IRCAM

● Enables fast and high-quality neural audio synthesis

● A lot of tutorials and helper tools available to support training your own
models

Variational AutoEncoder VAE

● Can learn important properties of the data it was exposed to

● Can use this knowledge to generate novel sounds which imitate the
data the model was trained on

● Can be controlled - when generating new sounds, you can specify
the desired direction

Autoencoder

● Encoder-Decoder architecture (two networks)

● Encoder takes an input and compresses it to a much smaller
representation (the encoding)

● Decoder can convert the encoding back to the original input

● Conclusions:
○ The encoding contains enough information for the decoder network to reconstruct it.

○ The encoder learns the most important properties of the input data and discards
irrelevant parts

Autoencoder

[0.1,0.3,1.0,0.2,0.4,0.1,…]

[0.1,0.3,1.0,0.2,0.4,0.1,…]

[0.1,0.3]

audio data

audio data

embedding

ENCODER

DECODER

Autoencoder

[0.1,0.3,1.0,0.2,0.4,0.1,…]

[0.1,0.3,1.0,0.2,0.4,0.1,…]

[0.1,0.3]

audio data

audio data

embedding

bottleneck

ENCODER

DECODER

Autoencoder

embedding space

latent space

ENCODER

DECODER

2D (in our example)

each embedding represents a
coordinate on the latent space

Latent space coordinates

[0.1, 0.3]

[0.1, 0.3, 0.2]

[0.1, 0.3, 0.2, 1.0]

2D latent space

3D latent space

4D latent space

Each latent space dimension corresponds to a specific feature or
characteristic learnt during the training process

Encoding

[0.1,0.3,1.0,0.2,0.4,0.1,…]audio data

embedding

latent space coordinates

ENCODER

[0.1,0.3]latent space

Decoding

latent space

DECODER

[0.1,0.3]

sample a point
from the latent space

pass it through
the decoder

[0.1,0.3,1.0,0.2,0.4,0.1,…]

reconstruct input data

Generating novel sounds

latent space

DECODER

sample a point
from the unpopulated

part of the latent space

Autoencoder - challenges

● The latent space is organised in clusters of similar things close to
each other

● The latent space may not be continuous (has gaps between
clusters). Sampling from the gaps will generate unrealistic output
because the decoder has no idea how to deal with that region of
the latent space

● In order to generate novel sounds we want to sample from the gaps
and smoothly transition between different regions

Variational AutoEncoder VAE

● Introduces two tricks to make VAEs suitable for generative modelling:
○ The latent space is continuous by design

○ The latent space is centered around the origin

Variational AutoEncoder VAE

● The latent space is continuous by design which makes VAEs
suitable for generative modelling.

Autoencoder Variational Autoencoder

��
𝜇

𝜇 and 𝜎 initialise a probability distribution

Variational AutoEncoder VAE

● The encoder does not output a single encoding vector but two vectors: a
vector of means (𝜇) and a vector of standard deviations (𝜎) from which
we sample to obtain the encoding we pass to the decoder

● Since encodings are generated at random from anywhere in the
distribution (the “circleˮ), the decoder learns that not only a single point
on the latent space represents the input sample but all nearby points
refer to it as well

● Thanks to being exposed to a range of variations of the encoding of the
same input during training, the decoder trains not only to decode
specific encodings but ones that slightly vary, too

Variational AutoEncoder VAE

● Centering around the origin:
○ During training, clustering encodings apart into specific regions gets penalised

○ All encodings end up evenly distributed around the center of the latent space

● Optimising both reconstruction loss and divergence loss results in a
latent space which maintains clusters of similar encodings nearby
on the local scale, but globally it is densely packed around the
latent space origin

Navigating the latent space

● Vector arithmetic

● Encoding an audio buffer and adding (or subtracting) from the
embedding vector

Interacting with the model

● Interact with the model from Jupyter Notebook

● Instantiating the audio engine

● Starting / stopping the engine

● Toggling style transfer

● Navigating the latent space

Setting up the workshop project

● Go to the ADC24 workshop repository
https://github.com/dynamic-cast/ADC24

https://github.com/dynamic-cast/ADC24

Setting up the workshop project

● Follow the steps in jupyter_setup.md
https://github.com/dynamic-cast/ADC24/blob/main/jupyter_setup.md

https://github.com/dynamic-cast/ADC24/blob/main/jupyter_setup.md

Embedding the RAVE Model

Inference - What is it?

The process of giving a machine learning model unseen
data to output (predict) a value.

1. Load the Model
2. Preprocess Data
3. Run Inference
4. Interpret Output

Machine Learning Pipeline

Training
Inference

Inference in Production Audio, Briefly

In audio contexts, we have to think about how quickly something can run.
If we want things to run in ‘real time ,̓ we need to consider:

● Audio Loading & Streaming
○ Avoid Memory Bottlenecks

● Real-Time Considerations
○ Buffers for Real-Time Streaming
○ Latency-Aware Code Structure

● Unbounded Execution Times
○ Allocations, etc
○ Garbage Collection

Note:- These are things to think about in production code

Interacting with Latent Space

We have several methods to interact with the RAVE model.

● encode: Encodes input data into a latent representation.
● forward: Runs the model's forward pass to process input data.
● decode: Decodes latent representation back into the original data

space.

Interacting with Latent Space

encode

The encode method is responsible for transforming input data into a
latent representation. This is often used in models that involve some
form of compression or feature extraction. For example, in an
autoencoder, the encoder part of the model compresses the input data
into a lower-dimensional latent space.

latent_representation = rave_model.encode(input_audio)

Interacting with Latent Space

forward

The forward method is the main method that defines the computation
performed at every call. In PyTorch, for example, the forward method is
where the actual computation of the model happens. It takes input data
and passes it through the model's layers to produce the output.

output_audio = rave_model.forward(input_audio)

Interacting with Latent Space

decode

The decode method takes the latent representation produced by the
encode method and transforms it back into the original data space. In
an autoencoder, the decoder part of the model reconstructs the original
data from the latent representation.

reconstructed_audio = rave_model.decode(latent_representation)

Embedding a Trained Model Using Pytorch

There are common
tools out there that
can run inference
for us.

In this example we
are using
torchscriptʼs JIT
engine.

From: https://lernapparat.de/jit-optimization-intro

Letʼs Look at apply_transformation

def _apply_transformation(self, buffer):

 torch.set_grad_enabled(False)

 input_data = torch.Tensor(buffer)

 input_data = torch.reshape(input_data, (1, 1, buffer.size))

 encoded = self._rave_model.encode(input_data)

 encoded[0][:,0] += self._latent_coordinates

 decoded = self._rave_model.decode(encoded)

 return decoded[0][0][:buffer.size].numpy()

Part II Training custom interactions with a generative model

Demo

What was the demo showing?

The demo was all about training a regression neural network model based
on the input/output data that you created yourselves.

What was the demo showing?

The demo was all about training a regression neural network model based
on the input/output data that you created yourselves.

What is regression?

● Francis Galton 1822  1911
● Statistician
● Regression analysis

“... While childrensʼ heights are influenced by their
parents, they tend to regress toward the average
height of the general population.ˮ

What is regression?

When you analyse a regression problem…

● To find a trend/pattern between certain factors and the corresponding
outcomes

● To define this trend/pattern as a mathematical expression/model, and
use it as a system to predict an outcome based on any given input.

The simplest example of regression

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

● X-axis: Daily average temperature

● Y-axis: Ice Cream Sales

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

The simplest example of regression

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

The “Line of best fit”...
● describes the data pattern well.
● can be represented by a simple

mathematical expression.

 y=ax+b (a: slope / b: y-intercept)

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

The simplest example of regression

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

● One feature in one input
● One feature in one output

● The pattern of data is drawn as
a linear line

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

The simplest example of regression

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

● One feature in one input
● One feature in one output

→ can be multiple features

● The pattern of data is drawn as
a linear line
→ nonlinear data pattern is
possible

http://sensibleanalytics.co.uk/how-key-driver-analysis-help/

Complex regression problems

1. Multi-dimensionality

https://aegis4048.github.io/mutiple_linear_regression
_and_visualization_in_python

https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python

Complex regression problems

1. Multi-dimensionality

https://aegis4048.github.io/mutiple_linear_regression
_and_visualization_in_python

2. Nonlinearity

 https://www.alexanderdemos.org/Class5.html

https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
https://www.alexanderdemos.org/Class5.html

Complex regression problems

1. Multi-dimensionality

https://aegis4048.github.io/mutiple_linear_regression
_and_visualization_in_python

2. Nonlinearity

 https://www.alexanderdemos.org/Class5.html

3. Multi-D + Nonlinear

https://www.statgraphics.co
m/blog/nonlinear_regression

https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
https://www.alexanderdemos.org/Class5.html
https://www.statgraphics.com/blog/nonlinear_regression
https://www.statgraphics.com/blog/nonlinear_regression

Why Neural Network?

● Multi-layer neural network can derive a mathematical model which is
well fitting the nonlinear and complex pattern in the data.

● How?

Inputs/outputs data

● Input features
○ x-coordinate
○ y-coordinate

● Output features
○ 4 sliders’ values

Inputs/outputs data

1 data point = 2 input features + 4 output features
(x,y coordinates) (4 sliders’ positions)

Goals & Aims with using NN

Goal:

To gather a lot of this data point and come up with a mathematical
model that best captures the nonlinear, multi-dimension, arbitrary
patterns shown by the dataset.

Aim:

Use the mathematical model as a system that takes any given input,
and predicts the corresponding output.

How it works?

● Multi-layer neural network can capture the nonlinear and complex
pattern in the data

 How?

Visualization of Neural Network Architecture

Visualization of Neural Network Architecture

Input feature 1

Input feature 2

Visualization of Neural Network Architecture

Input feature 1

Input feature 2

Mathematical operations

Mathematical operations

Visualization of Neural Network Architecture

Input feature 1

Input feature 2

Mathematical operations
32 Intermediate values after passed
through a function

Mathematical operations

Visualization of Neural Network Architecture

Input feature 1

Input feature 2

Mathematical operations
32 Intermediate values after passed
through a function

Mathematical operations

Output feature 1
Output feature 2
Output feature 3
Output feature 4

Linear layer

Mathematical operations

Mathematical operations

x1

x2

w1

w2

y1

ReLU An activation function

32 Intermediate values after passed
through a function

● An activation function that
provides nonlinearity to neural
networks.

● Rectified Linear Unit
● ReLU(x)=max(0,x)

https://machinelearningmastery.com/rectified-linear-acti
vation-function-for-deep-learning-neural-networks/

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

What is training?

Training is an iterative process to find the optimized values for the weights and biases that make
up the network.

A process of training 1 Forward pass

● Passing the input data through the neural network

● We don’t know what the values of the weights and biases should be, so the
network only has randomly assigned values at the beginning stage.

● The results after the first forward pass must be a lot differ from the actual
output values.

A process of training 2 MSE-based Loss Calculation

MSE calculates a cost per epoch/batch:

the average of the squared differences between the actual output
values from dataset and the model’s predicted values via forward pass.

A process of training 3 Backpropagation to optimize params in NN

● Parameters in NN: weights, biases

● Backpropagation (of error) , chain rule

● Gradient descent

● How do you know when the training is finished?

Regression model

● $ git checkout main

● open Jupyter Notebook

Controlling the generative model

● See how the regression model is used in the app to control the
generative model

● Play time!
○ Try training different interactions

Recap

● We have embedded a model which applies a style transfer effect to the
audio sample loaded in our instrument.

● We have interacted with the generative model by exposing its latent space
(compressed and organised representation of the training data) and
navigating it with the sliders.

○ The values of the four sliders form a point in the 4D latent space, eg. (-1, 0, 1.5, 2)

● We have defined how to generate custom gestural interactions with the
generative model

○ Adding the possibility to create a training dataset which translates a mouse XY position (2 values)
to a point in the latent space dimension (4 values)

○ Training a regression model on the dataset

○ Using the regression model to translate our position on the XY pad to a point in the latent space

Thank you

