

Real-Time Inference of Neural Networks

A Practical Approach for DSP Engineers – Part II

Fares Schulz Valentin Ackva

Audio Developer Conference

Bristol 2024

Background

nn-inference-templateLondon, ADC 2023

About us

Valentin Ackva

Audio Software Developer

INSONE GmbH in Leipzig, Germany

Fares Schulz

Researcher / Head of TU Studio

Technische Universität Berlin, Germany

 Introductio

 Examine Real-Time Violation

 Library Architectur

 Deep Dive Thread Pool and Latenc

 Impact on Inference Runtime

 Conclusion

Table of Content

Chapter I

Introduction

Recap Part I, Relevance

Neural Network Integration

Introduction ADC24

EXPORT IMPLEMENTTRAIN

Train Neural Network

using Pytorch / Tensorflow

Python

Export NN Model

format for inference stage

Python

Implement in Audio Environment

ensure real-time safety

C++

How to Implement the Inference?

Write inference

yourself

using

std::lib, Eigen, SIMD

Use specialized

libraries

known as

inference engines

Introduction ADC24

How to Implement the Inference?

Write inference

yourself

using

std::lib, Eigen, SIMD

Use specialized

libraries

known as

inference engines

Introduction ADC24

Major Inference Engines

Onnx Runtime LibTorch TensorFlow Lite

Introduction ADC24

Real-time Principles

 These inference engines favor average execution time
 None of the libraries gives real-time safety guarantie
 Confusion on real-time safety of major inference engines

 Chowdhury finds no real-time safe (2021
 Stefani et al. conclude real-time safety after first inference (2022

 Noteworthy: RTNeural – a real-time safe inference engin
 Fast for small network
 Very limited layer support

Chowdhury, J. (2021). Rtneural: Fast neural inferencing for real-time systems. arXiv preprint arXiv:2106.03037.

Stefani, D., Peroni, S., & Turchet, L. (2022). A comparison of deep learning inference engines for embedded real-time  
audio classification. In Proceedings of the International Conference on Digital Audio Effects, DAFx (Vol. 3, pp. 256-263).

Introduction ADC24

In the Last Talk

 Outline of the pipeline for
implementing neural networks 
in audio plug-in

 Overview of major inference engine
 Presentation of a real-time safe plug-
in templat

 Basic benchmark for inference
engines inferring a neural network
mode

 Discussion about continuous signals /
streamability of neural networks

Introduction ADC24

Part I - ADC23

In This Talk

 Quantification of real-time violations of inference engine
 Cross-platform library - ANIRA: An Architecture for Neural Network Inference in

Real-Time Audio Application
 Streamlines the use of neural networks in any real-time audio 

environmen
 Significant improvements for the use of multiple instance
 Refined latency calculatio
 Built-in benchmarking capabilitie

 Performance impact of various factors on inference runtimes

Introduction ADC24

anira

Chapter II

Examine Real-Time Violations

Methods, Results

Real-Time Violation Checks

How can we check real-time violations by external
libraries?

RT-Violations ADC24

Verification Method

Real Time Sanitizer - RTSan (prev. RADSan)

 Part of clang compiler and runtime library

RT-Violations ADC24

Verification Method

How does RTSan work?

 Introduces real-time context and intercepts for non-real-time safe operations like
malloc and free

RT-Violations ADC24

RTSan patch

C++ code Compiler Executable

system lib RTSan lib

external lib

Linker

Test Setup Overview

RT-Violations ADC24

OnnxRuntime LibTorch TensorFlow Lite

Convolutional 
Neural Network

Recurrent

Neural Network

Hybrid

Neural Network

1 2 3 4 5 6 48... 49 50

Results

RT-Violations ADC24

Inference Engine Integration

We should not run these engines on the real-time
thread!

RT-Violations ADC24

Chapter III

Library Architecture

Solving Limitations, Interface

Proposed Architecture - ADC23

Architecture ADC24

Inference Thread

model input size

InferenceEngine

>=

Inference

PreProcessing

PostProcessing

startThread

falsetrue

Real-Time Audio Thread

AudioProcessor InferenceManager

prepareToPlay()

<=

processBlock()

HostAudioBuffer

truefalse

true

calc

false

writeBufferreturn

>=

host buffer size

allocate

count

clearBuffer

initSamples

ThreadSafeBuffer

ThreadSafeBuffer

Architecture Limitation

Architecture ADC24

Logical Cores

1

2

3

4

Operating System

DAW

Inference Thread

Message Thread

Architecture Limitation

Architecture ADC24

Logical Cores

1

2

3

4

Operating System

DAW

Inference Thread Inference Thread

Inference Thread

Message Thread

Architecture Limitation

Architecture ADC24

Logical Cores

!! Oversubscription !!

1

2

3

4

Operating System

DAW

Inference Thread

Inference Thread

Inference Thread Inference Thread

Inference Thread

Inference Thread

Message Thread

Architecture Limitation

Oversubscription Problem

 If number of high-priority threads > number of logical core
 Causes threads to compete for the same core
 Can be especially problematic for real-time processes

Solution - Static Thread Pool Design

 Shares inference threads across instances (e.g. different plugins
 Can enable parallel execution for faster inferenc
 Implementation requires developing a dedicated library

Architecture ADC24

Architecture

Architecture ADC24

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Real-Time Audio Thread

Architecture

Architecture ADC24

Context <static>

private anira

...

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Architecture

Architecture ADC24

Context <static>

private anira

...

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Architecture

Architecture ADC24

Context <static>

private anira

...

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Get Instance

ContextConfig

Architecture

Architecture ADC24

Context <static>

private anira

...

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Architecture

Architecture ADC24

Context <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Library Integration

How does the interaction with the library work?

Architecture ADC24

Interface

In order to use the anira library

 Configure inference parameters in
anira::InferenceConfi

 Optional: Define a
anira::ContextConfi

 Optional: Define a custom
anira::PrePostProcessor

 Everything else will be handled
automatically, regardless of the neural
network type

Architecture ADC24

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Real-Time Audio Thread

Interface

Necessary Parameters

 Model data path

 Model shapes

 Max inference time

* definable for multiple inference engines

Context (optional, shared)

 Number of threads

Architecture ADC24

Optional Parameters

 Model latency

 Warm-up inferenc

 Number of channel

 Bind session to processo

 Number of parallel processor

 ...

Code Example

Architecture ADC24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

#include

anira::InferenceConfig
anira::InferenceBackend

anira::PrePostProcessor
anira::InferenceHandler

int

anira::InferenceBackend::ONNX

float** int

<anira/anira.h>

 ;

inference_config

pp_processor
inference_handler pp_processor inference_config

inference_handler
latency_in_samples inference_handler

inference_handler

inference_handler

(

 {“path/to/model.onnx", :: }
 {{{1, 1, 512}}, {{1, 1, 512}}},
 5.0f,
);

(,);

.prepare({buffer_size, sample_rate}
= .get_latency();

.set_inference_backend();

process_block(audio_data, num_samples) {  
 .process(audio_data, num_samples);
}

ONNX // Model data

// Input- Output-Tensor shapes

// Maximum inference time in ms

// Create default pre- and post-processor

// InferenceHandler

// Allocate memory

 // Get latency of the inference process

// Select the backend  

// Real-time safe audio processing 

);

Custom PrePostProcessor

Not all networks process a fixed
number of samples in and out

 Need for a custom pre- and
postprocessing

A thread-safe mechanism is provided
to

 Pass parameter
 Inject or retrieve state informatio
 submit a receptive field

Architecture ADC24

x0 x1 x2 ... xM-1 q0

Input Audio Data

Example 1:

Param

y0 y1 y2 ... yM-1 p0

Output Audio Data

Example 2:

Prediction

Supported Inference Engines

Onnx Runtime LibTorch TensorFlow Lite Custom

Any Backend /
Customization

Implementation ANIRA

Chapter IV

Deep Dive Thread Pool and Latency

Static Thread Pool Design, Minimum Latency

Architecture Overview

Deep Dive ADC24

Context <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp2

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

ThreadPoolReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Architecture Overview

Deep Dive ADC24

Context <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp2

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

ThreadPoolReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Coordinating Inference Tasks

 Thread-safe structures shared 
by multiple thread

 Use of std::atomics to 
avoid data race

 Thread-safe queue to 
coordinate job submission

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Coordinating Inference Tasks

 Thread-safe structures shared 
by multiple thread

 Use of std::atomics to 
avoid data race

 Thread-safe queue to 
coordinate job submissio

 Audio thread enqueues 
inference task

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference Task

Coordinating Inference Tasks

 Thread-safe structures shared 
by multiple thread

 Use of std::atomics to 
avoid data race

 Thread-safe queue to 
coordinate job submissio

 Audio thread enqueues 
inference tas

 Inference threads infer oldest 
entry

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference

try_dequeue()

Coordinating Inference Tasks

 Thread-safe structures shared 
by multiple thread

 Use of std::atomics to 
avoid data race

 Thread-safe queue to 
coordinate job submissio

 Audio thread enqueues 
inference tas

 Inference threads infer oldest 
entry

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference

try_dequeue()

Coordinating Inference Tasks

 Thread-safe structures shared 
by multiple thread

 Use of std::atomics to 
avoid data race

 Thread-safe queue to 
coordinate job submissio

 Audio thread enqueues 
inference tas

 Inference threads infer oldest 
entr

 Busy loop if queue is empty

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference

try_dequeue()

busy loop

Safe Spin Locks

 Keeping threads alive without using all CPU resource
 The magic keyword is exponential backof
 Great talk on this topic:

Deep Dive ADC24

Host Provided Threads ?

Deep Dive ADC24

AniraContext <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

ThreadPoolReal-Time Audio Thread

Start Threads

ContextConfig

Get Instance

?

Host Provided Threads ?

Deep Dive ADC24

Host Thread Pool

clap...

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Host Provided ThreadsReal-Time Audio Thread

Get Instance

Request Execution

ContextConfig

Host Provided Threads ?

Deep Dive ADC24

Host Thread Pool

clap...

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Host Provided ThreadsReal-Time Audio Thread

Get Instance

Request Execution

ContextConfig

1

2

3

4

5

6

7

8

9

10

11

12

typedef struct

 // Schedule num_tasks jobs in the host thread pool.

 // Will block until all the tasks are processed.

 // This must be used exclusively for realtime processing within the process call.

 // It can't be called concurrently or from the thread pool.

 // Returns true if the host did execute all the tasks, false if it rejected the request.

 // The host should check that the plugin is within the process call, and if not,

 // reject the execrequest.

 // [audio-thread]

 (

clap_host_thread_pool

request_exec

{

*)(clap_host_tQ*host, uint32_t num_tasks);

} clap_host_thread_pool_t;

bool constCLAP_ABI

Host Provided Threads ?

Deep Dive ADC24

Host Thread Pool

clap...

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Host Provided ThreadsReal-Time Audio Thread

Get Instance

Request Execution

ContextConfig

bad idea!

1

2

3

4

5

6

7

8

9

10

11

12

typedef struct

 // Schedule num_tasks jobs in the host thread pool.

 //
 // This must be used
 // It can't be called concurrently or from the thread pool.

 // Returns true if the host did execute all the tasks, false if it rejected the request.

 // The host should check that the plugin is within the process call, and if not,

 // reject the execrequest.

 // [audio-thread]

 (

clap_host_thread_pool

request_exec

{

*)(clap_host_tQ*host, uint32_t num_tasks);

} clap_host_thread_pool_t;

Will block until all the tasks are processed.

exclusively for realtime processing within the process call.

bool constCLAP_ABI

Latency Influences

Host Buffer Size

varying

known at run-time

Model Input Size

fixed

known at compile-time

Model Latency

fixed

known at compile-time

Max Inference Time

varying

system dependent

Deep Dive ADC24

Latency

We often face situations where the host and model input size don't match

 leaving a remainder when divided

Deep Dive ADC24

Host Buffer Size

Model Input Size

Latency

To minimize latency we use Callback adaptation techniques: (Letz, 2001

 Calculate the largest remainder of nA divided by B until a pattern repeats

Deep Dive ADC24

B

A A A

B B B B B

 jjfjjfj

B

Letz, S. (2001). Callback adaptation techniques (Doctoral dissertation, GRAME).

Latency

 Calculate the maximum number of inferences for one buffer
 Multiply this number with the worst case execution time of one inference

Deep Dive ADC24

B

A A A

B B B B B B

 jjfjjfj

Latency

Deep Dive ADC24

 jjfjjfj

 Total Latency

 Host Buffer Size Max. Inference Time Model Latency

 Largest Remainder

Controlled Blocking Operation

Optional solution to further reduce the
latency:

std::binary_semaphore::try_acquire_unti

 Controlled blocking operatio
 Maximizes the time available to

receive data from inference thread
 Disabled by default as it is highly

controversia
 Useful especially for scenarios with

only one instance

Deep Dive ADC24

callback() callback()

10 ms

try to aquire new data

audio data

10 ms

callback()

5 ms 5 ms

Chapter V

Impact on Inference Runtimes

Various Factors Affecting Performance

Benchmarking

Performance ADC24

Fi
xt

ur
e

construct

Arg1: Buffer Size 
[64, 128, ..., 2048]

execute

anira

Audio Buffer Iterations

...

destruct

anira

Arg2: Backend 
[ONNX, TFLITE, LIBTORCH]

Arg3: Model 
[CNN, RNN, HYBRID]

Arg4: Repetition 
[10]

Measurements

Performance ADC24

system

Linux – Intel MacBook

MacOS – M1 MacBook

Windows – HP ZBook

engine

OnnxRuntime

Libtorch

TFLite

Bypass-Engine

model

HNN-11k

RNN-2k

CNN-29k

CNN-15k

CNN-1k

buffer size

64

128

...

8192

repetition

1

2

...

10

iteration

1

2

...

50

Inference Engine Comparison

Performance ADC24

CNN Hyperparameter Comparison

Performance ADC24

Influence of the Iteration

Performance ADC24

Violations vs. Runtime Performance - LibTorch

Performance ADC24

Real-time Violations

RpS per Iteration

Violations vs. Runtime Performance - Onnx Runtime

Performance ADC24

Real-time Violations

RpS per Iteration

Influence of the Buffer Size

Performance ADC24

Chapter VI

Conclusion

Summary, Getting Started, Questions

Library Feature Overview

Thread-Safe Inference Engine Wrapper Library

 Supports major inference engine
 Compatible with various neural network type
 Enables handling of multiple sessio

 Across different plugins (and formats) with multiple instance
 Across various neural network types

C++ Cross Platform Library

 available on Windows (x64), Linux (x64, aarch64, armv7l), macOS (x64, arm64)

Permissive License: Apache 2.0

Conclusion ADC24

Objectives of the Library

Implementing real-time safe inference requires expertise across various domains

The library aims to simplify real-time safe inference
implementation

Conclusion ADC24

Getting Started

We provide five example neural networks, each featuring

 ML implementatio
 Training code and dat
 Pre-trained models

Every example can be adapted into a real-time application, available as

 Audio plugin using the JUCE framewor
 Native CLAP plugin, Bela embedded applicatio
 Soon: JACK client, Max external

Additionally, we include example benchmarks to validate runtimes

Conclusion ADC24

Paper

Conclusion ADC24

https://doi.org/10.1109/IS262782.2024.10704099

Repository

Conclusion ADC24

https://github.com/anira-project/anira

Thank you for listening

Do you have questions?

Repository:

Audio Communication Group
Technische Universität Berlin

