

Real-Time Inference of Neural Networks

A Practical Approach for DSP Engineers – Part II

Fares Schulz Valentin Ackva

Audio Developer Conference

Bristol 2024

Background

nn-inference-templateLondon, ADC 2023

About us

Valentin Ackva

Audio Software Developer

INSONE GmbH in Leipzig, Germany

Fares Schulz

Researcher / Head of TU Studio

Technische Universität Berlin, Germany

�� Introductio�

�� Examine Real-Time Violation�

�� Library Architectur�

�� Deep Dive Thread Pool and Latenc�

�� Impact on Inference Runtime�

�� Conclusion

Table of Content

Chapter I

Introduction

Recap Part I, Relevance

Neural Network Integration

Introduction ADC24

EXPORT IMPLEMENTTRAIN

Train Neural Network

using Pytorch / Tensorflow

Python

Export NN Model

format for inference stage

Python

Implement in Audio Environment

ensure real-time safety

C++

How to Implement the Inference?

Write inference

yourself

using

std::lib, Eigen, SIMD

Use specialized

libraries

known as

inference engines

Introduction ADC24

How to Implement the Inference?

Write inference

yourself

using

std::lib, Eigen, SIMD

Use specialized

libraries

known as

inference engines

Introduction ADC24

Major Inference Engines

Onnx Runtime LibTorch TensorFlow Lite

Introduction ADC24

Real-time Principles

� These inference engines favor average execution time�
� None of the libraries gives real-time safety guarantie�
� Confusion on real-time safety of major inference engines�

� Chowdhury finds no real-time safe (2021�
� Stefani et al. conclude real-time safety after first inference (2022�

� Noteworthy: RTNeural – a real-time safe inference engin�
� Fast for small network�
� Very limited layer support

Chowdhury, J. (2021). Rtneural: Fast neural inferencing for real-time systems. arXiv preprint arXiv:2106.03037.

Stefani, D., Peroni, S., & Turchet, L. (2022). A comparison of deep learning inference engines for embedded real-time  
audio classification. In Proceedings of the International Conference on Digital Audio Effects, DAFx (Vol. 3, pp. 256-263).

Introduction ADC24

In the Last Talk

� Outline of the pipeline for
implementing neural networks 
in audio plug-in�

� Overview of major inference engine�
� Presentation of a real-time safe plug-
in templat�

� Basic benchmark for inference
engines inferring a neural network
mode�

� Discussion about continuous signals /
streamability of neural networks

Introduction ADC24

Part I - ADC23

In This Talk

� Quantification of real-time violations of inference engine�
� Cross-platform library - ANIRA: An Architecture for Neural Network Inference in

Real-Time Audio Application�
� Streamlines the use of neural networks in any real-time audio 

environmen�
� Significant improvements for the use of multiple instance�
� Refined latency calculatio�
� Built-in benchmarking capabilitie�

� Performance impact of various factors on inference runtimes

Introduction ADC24

anira

Chapter II

Examine Real-Time Violations

Methods, Results

Real-Time Violation Checks

How can we check real-time violations by external
libraries?

RT-Violations ADC24

Verification Method

Real Time Sanitizer - RTSan (prev. RADSan)�

� Part of clang compiler and runtime library

RT-Violations ADC24

Verification Method

How does RTSan work?

�

� Introduces real-time context and intercepts for non-real-time safe operations like
malloc and free

RT-Violations ADC24

RTSan patch

C++ code Compiler Executable

system lib RTSan lib

external lib

Linker

Test Setup Overview

RT-Violations ADC24

OnnxRuntime LibTorch TensorFlow Lite

Convolutional 
Neural Network

Recurrent

Neural Network

Hybrid

Neural Network

1 2 3 4 5 6 48... 49 50

Results

RT-Violations ADC24

Inference Engine Integration

We should not run these engines on the real-time
thread!

RT-Violations ADC24

Chapter III

Library Architecture

Solving Limitations, Interface

Proposed Architecture - ADC23

Architecture ADC24

Inference Thread

model input size

InferenceEngine

>=

Inference

PreProcessing

PostProcessing

startThread

falsetrue

Real-Time Audio Thread

AudioProcessor InferenceManager

prepareToPlay()

<=

processBlock()

HostAudioBuffer

truefalse

true

calc

false

writeBufferreturn

>=

host buffer size

allocate

count

clearBuffer

initSamples

ThreadSafeBuffer

ThreadSafeBuffer

Architecture Limitation

Architecture ADC24

Logical Cores

1

2

3

4

Operating System

DAW

Inference Thread

Message Thread

Architecture Limitation

Architecture ADC24

Logical Cores

1

2

3

4

Operating System

DAW

Inference Thread Inference Thread

Inference Thread

Message Thread

Architecture Limitation

Architecture ADC24

Logical Cores

!! Oversubscription !!

1

2

3

4

Operating System

DAW

Inference Thread

Inference Thread

Inference Thread Inference Thread

Inference Thread

Inference Thread

Message Thread

Architecture Limitation

Oversubscription Problem�

� If number of high-priority threads > number of logical core�
� Causes threads to compete for the same core�
� Can be especially problematic for real-time processes

Solution - Static Thread Pool Design�

� Shares inference threads across instances (e.g. different plugins�
� Can enable parallel execution for faster inferenc�
� Implementation requires developing a dedicated library

Architecture ADC24

Architecture

Architecture ADC24

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Real-Time Audio Thread

Architecture

Architecture ADC24

Context <static>

private anira

...

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Architecture

Architecture ADC24

Context <static>

private anira

...

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Architecture

Architecture ADC24

Context <static>

private anira

...

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Get Instance

ContextConfig

Architecture

Architecture ADC24

Context <static>

private anira

...

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Architecture

Architecture ADC24

Context <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Inference ThreadsReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Library Integration

How does the interaction with the library work?

Architecture ADC24

Interface

In order to use the anira library �

� Configure inference parameters in
anira::InferenceConfi�

� Optional: Define a
anira::ContextConfi�

� Optional: Define a custom
anira::PrePostProcessor

 Everything else will be handled
automatically, regardless of the neural
network type

Architecture ADC24

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Real-Time Audio Thread

Interface

Necessary Parameters�

� Model data path�

� Model shapes�

� Max inference time

* definable for multiple inference engines

Context (optional, shared)�

� Number of threads

Architecture ADC24

Optional Parameters�

� Model latency�

� Warm-up inferenc�

� Number of channel�

� Bind session to processo�

� Number of parallel processor�

� ...

Code Example

Architecture ADC24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20

#include

anira::InferenceConfig
anira::InferenceBackend

anira::PrePostProcessor
anira::InferenceHandler

int

anira::InferenceBackend::ONNX

float** int

<anira/anira.h>

 ;

inference_config

pp_processor
inference_handler pp_processor inference_config

inference_handler
latency_in_samples inference_handler

inference_handler

inference_handler

(

 {“path/to/model.onnx", :: }
 {{{1, 1, 512}}, {{1, 1, 512}}},
 5.0f,
);

(,);

.prepare({buffer_size, sample_rate}
= .get_latency();

.set_inference_backend();

process_block(audio_data, num_samples) {  
 .process(audio_data, num_samples);
}

ONNX // Model data

// Input- Output-Tensor shapes

// Maximum inference time in ms

// Create default pre- and post-processor

// InferenceHandler

// Allocate memory

 // Get latency of the inference process

// Select the backend  

// Real-time safe audio processing 

);

Custom PrePostProcessor

Not all networks process a fixed
number of samples in and out�

� Need for a custom pre- and
postprocessing

A thread-safe mechanism is provided
to�

� Pass parameter�
� Inject or retrieve state informatio�
� submit a receptive field

Architecture ADC24

x0 x1 x2 ... xM-1 q0

Input Audio Data

Example 1:

Param

y0 y1 y2 ... yM-1 p0

Output Audio Data

Example 2:

Prediction

Supported Inference Engines

Onnx Runtime LibTorch TensorFlow Lite Custom

Any Backend /
Customization

Implementation ANIRA

Chapter IV

Deep Dive Thread Pool and Latency

Static Thread Pool Design, Minimum Latency

Architecture Overview

Deep Dive ADC24

Context <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp2

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

ThreadPoolReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Architecture Overview

Deep Dive ADC24

Context <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp2

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

ThreadPoolReal-Time Audio Thread

Get Instance

Start Threads

ContextConfig

Coordinating Inference Tasks

� Thread-safe structures shared 
by multiple thread�

� Use of std::atomics to 
avoid data race�

� Thread-safe queue to 
coordinate job submission

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Coordinating Inference Tasks

� Thread-safe structures shared 
by multiple thread�

� Use of std::atomics to 
avoid data race�

� Thread-safe queue to 
coordinate job submissio�

� Audio thread enqueues 
inference task

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference Task

Coordinating Inference Tasks

� Thread-safe structures shared 
by multiple thread�

� Use of std::atomics to 
avoid data race�

� Thread-safe queue to 
coordinate job submissio�

� Audio thread enqueues 
inference tas�

� Inference threads infer oldest 
entry

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference

try_dequeue()

Coordinating Inference Tasks

� Thread-safe structures shared 
by multiple thread�

� Use of std::atomics to 
avoid data race�

� Thread-safe queue to 
coordinate job submissio�

� Audio thread enqueues 
inference tas�

� Inference threads infer oldest 
entry

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference

try_dequeue()

Coordinating Inference Tasks

� Thread-safe structures shared 
by multiple thread�

� Use of std::atomics to 
avoid data race�

� Thread-safe queue to 
coordinate job submissio�

� Audio thread enqueues 
inference tas�

� Inference threads infer oldest 
entr�

� Busy loop if queue is empty

Deep Dive ADC24

Thread-safe Queue

Real-Time Audio Thread Inference Threads

Inference

try_dequeue()

busy loop

Safe Spin Locks

� Keeping threads alive without using all CPU resource�
� The magic keyword is exponential backof�
� Great talk on this topic:

Deep Dive ADC24

Host Provided Threads ?

Deep Dive ADC24

AniraContext <static>

private anira

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

ThreadPoolReal-Time Audio Thread

Start Threads

ContextConfig

Get Instance

?

Host Provided Threads ?

Deep Dive ADC24

Host Thread Pool

clap...

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Host Provided ThreadsReal-Time Audio Thread

Get Instance

Request Execution

ContextConfig

Host Provided Threads ?

Deep Dive ADC24

Host Thread Pool

clap...

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Host Provided ThreadsReal-Time Audio Thread

Get Instance

Request Execution

ContextConfig

1

2

3

4

5

6

7

8

9

10

11

12

typedef struct

 // Schedule num_tasks jobs in the host thread pool.

 // Will block until all the tasks are processed.

 // This must be used exclusively for realtime processing within the process call.

 // It can't be called concurrently or from the thread pool.

 // Returns true if the host did execute all the tasks, false if it rejected the request.

 // The host should check that the plugin is within the process call, and if not,

 // reject the exec
request.

 // [audio-thread]

 (

clap_host_thread_pool

request_exec

{

*)(clap_host_tQ*host, uint32_t num_tasks);

} clap_host_thread_pool_t;

bool constCLAP_ABI

Host Provided Threads ?

Deep Dive ADC24

Host Thread Pool

clap...

...

ThreadSafeStructs

SessionElement

InferenceConfig PrePostProcessor Initialize Engines

RingBuffer

Allocate Memory

Stamp TimePre-Process

RingBuffer

Post-Process Get Next Stamp

InferenceManager

InferenceConfig

Calculate Latency

Buffer Alignment

private anira

InferenceHandler

prepare(args **)

process(args **)

InferenceHandler(args **)

public anira API

Audio Application

RT Audio Callback

PrePostProcessor

ContextConfig (optional)

InferenceConfig

Initialization Callback

Buffer Size Sample Rate

extern

InputAudioBuffer

OutputAudioBuffer

Host Provided ThreadsReal-Time Audio Thread

Get Instance

Request Execution

ContextConfig

bad idea!

1

2

3

4

5

6

7

8

9

10

11

12

typedef struct

 // Schedule num_tasks jobs in the host thread pool.

 //
 // This must be used
 // It can't be called concurrently or from the thread pool.

 // Returns true if the host did execute all the tasks, false if it rejected the request.

 // The host should check that the plugin is within the process call, and if not,

 // reject the exec
request.

 // [audio-thread]

 (

clap_host_thread_pool

request_exec

{

*)(clap_host_tQ*host, uint32_t num_tasks);

} clap_host_thread_pool_t;

Will block until all the tasks are processed.

exclusively for realtime processing within the process call.

bool constCLAP_ABI

Latency Influences

Host Buffer Size

varying

known at run-time

Model Input Size

fixed

known at compile-time

Model Latency

fixed

known at compile-time

Max Inference Time

varying

system dependent

Deep Dive ADC24

Latency

We often face situations where the host and model input size don't match

 leaving a remainder when divided

Deep Dive ADC24

Host Buffer Size

Model Input Size

Latency

To minimize latency we use Callback adaptation techniques: (Letz, 2001�

�� Calculate the largest remainder of nA divided by B until a pattern repeats

Deep Dive ADC24

B

A A A

B B B B B

 jjfjjfj

B

Letz, S. (2001). Callback adaptation techniques (Doctoral dissertation, GRAME).

Latency

�� Calculate the maximum number of inferences for one buffer �
�� Multiply this number with the worst case execution time of one inference

Deep Dive ADC24

B

A A A

B B B B B B

 jjfjjfj

Latency

Deep Dive ADC24

 jjfjjfj

 Total Latency

 Host Buffer Size Max. Inference Time Model Latency

 Largest Remainder

Controlled Blocking Operation

Optional solution to further reduce the
latency:

std::binary_semaphore::try_acquire_unti�

� Controlled blocking operatio�
� Maximizes the time available to

receive data from inference thread�
� Disabled by default as it is highly

controversia�
� Useful especially for scenarios with

only one instance

Deep Dive ADC24

callback() callback()

10 ms

try to aquire new data

audio data

10 ms

callback()

5 ms 5 ms

Chapter V

Impact on Inference Runtimes

Various Factors Affecting Performance

Benchmarking

Performance ADC24

Fi
xt

ur
e

construct

Arg1: Buffer Size 
[64, 128, ..., 2048]

execute

anira

Audio Buffer Iterations

...

destruct

anira

Arg2: Backend 
[ONNX, TFLITE, LIBTORCH]

Arg3: Model 
[CNN, RNN, HYBRID]

Arg4: Repetition 
[10]

Measurements

Performance ADC24

system

Linux – Intel MacBook

MacOS – M1 MacBook

Windows – HP ZBook

engine

OnnxRuntime

Libtorch

TFLite

Bypass-Engine

model

HNN-11k

RNN-2k

CNN-29k

CNN-15k

CNN-1k

buffer size

64

128

...

8192

repetition

1

2

...

10

iteration

1

2

...

50

Inference Engine Comparison

Performance ADC24

CNN Hyperparameter Comparison

Performance ADC24

Influence of the Iteration

Performance ADC24

Violations vs. Runtime Performance - LibTorch

Performance ADC24

Real-time Violations

RpS per Iteration

Violations vs. Runtime Performance - Onnx Runtime

Performance ADC24

Real-time Violations

RpS per Iteration

Influence of the Buffer Size

Performance ADC24

Chapter VI

Conclusion

Summary, Getting Started, Questions

Library Feature Overview

Thread-Safe Inference Engine Wrapper Library�

� Supports major inference engine�
� Compatible with various neural network type�
� Enables handling of multiple sessio�

� Across different plugins (and formats) with multiple instance�
� Across various neural network types

C++ Cross Platform Library�

� available on Windows (x64), Linux (x64, aarch64, armv7l), macOS (x64, arm64)

Permissive License: Apache 2.0

Conclusion ADC24

Objectives of the Library

Implementing real-time safe inference requires expertise across various domains

The library aims to simplify real-time safe inference
implementation

Conclusion ADC24

Getting Started

We provide five example neural networks, each featuring�

� ML implementatio�
� Training code and dat�
� Pre-trained models

Every example can be adapted into a real-time application, available as�

� Audio plugin using the JUCE framewor�
� Native CLAP plugin, Bela embedded applicatio�
� Soon: JACK client, Max external

Additionally, we include example benchmarks to validate runtimes

Conclusion ADC24

Paper

Conclusion ADC24

https://doi.org/10.1109/IS262782.2024.10704099

Repository

Conclusion ADC24

https://github.com/anira-project/anira

Thank you for listening

Do you have questions?

Repository:

Audio Communication Group
Technische Universität Berlin

