
[Unit] Testing like a Lazy Pro
or How To Write a Rock-Solid Test Harness

 by Marcel Roth and Dino Pollano

Who is Marcel?

zplane.development

Project: Parameterization of a convolution reverb

Spitfire Audio

Projects: LABS, CI/CD pipeline, unit testing

DSP-related companies (GER, NL, UK)

18 years of ones and zeros (i.e. 10010 years)

Technical University Berlin

Thesis: Musical instrument recognition using Hidden Markov Model

Who is Dino?
Bournemouth University

Rebel Technology/OWL Guitar pedal

QMUL

L-ISA / L-Acoustics

Spitfire Audio

● Hans Zimmer Strings
● LABS
● BBCSO
● AIR
● Internal tools/DSP work

What’s to come?

● Unit testing in General

● Testing audio in JUCE

● Demo

● Other testing

● Further reading

TESTING AUDIO IN JUCE

What are we playing with?

VSCode

 Github (MCRJuce)

Juce (CMake project)

Catch2

Let’s create ‘Linear Panning’

X = (Mono) input signal
AL = Left output channel amplitude
AR = Right output channel amplitude
PAN = Panning value (0 to 1)

Equation:
 AL = (1-PAN) * X
 AR = PAN * X

Pan

Examples:
● PAN = 0, AL = X, AR = 0
● PAN = 1, AL = 0, AR = X
● PAN = 0.5, AL = X/2, AR = X/2

Floating point comparison

REQUIRE (ValueA == ValueB);

=>

REQUIRE (std::abs (ValueA - ValueB) < epsilon);

UNIT TESTING IN GENERAL

What is a unit?
The smallest, possibly testable bit of code.

● A module (is this integrated testing?)
○ …

● A class
○ Reader - Writer
○ Saver - Loader

● A function (or 2)
○ read - write
○ save - load

TDD and BDD

What is test-driven development (TDD)?

Write the tests first.

What is behaviour-driven development
(BDD)?

“Test adding positive numbers”,
“Test adding negative numbers”,
“Test adding fractal numbers”,…

“When a is 1 and b is 1, then result is 2.”
“When a is -1 and b is -1, then result is -2.”
“When a is 0.5 and b is 0.1, then result is 0.6.”

SCENARIO: We want to add numbers

GIVEN: a is 1 and b is 1

THEN: the result is 2

The lazy circle of a life in unit testing

Lazy tester

Lazy dev

Lazy dev

Lazy tester

“It takes too much time”

“Debug-Later” Programming vs Test-Driven Development

Rule #1

Thou shall not rewrite the code your testing.

Basic concept

 Object obj;
 actual = obj.call (input);

input

expected

actual

expected

Outline Exercise (When)

Prepare

Prepare (Given)

==
???

Evaluate (Then)

a = 1; b =1;
expected = 2;

mathOp =
add;

actual =
mathOp(a, b);

REQUIRE
(actual ==
expected);

DEMO

OTHER TESTING

Property testing

MONO_INPUT & (PAN < 0.5)

=>

LEFT > RIGHT

LEFT > MONO_INPUT/2

Random input: samples, pan

=>

Conditions are always met.

Test types

Unit tests

There is nothing smaller we can test.

Integrated tests

There are a bunch of units working together in the test.

End-to-End tests

User-like testing. Interacting with the interface.
(Focusrite juce-end-to-end)

Test sizes (Google?)
small, medium, large

Performance tests
Testing with a stopwatch, warm-up, different hardware,
different systems

Resource tests
Eyes on the memory.

Manual tests

Mocking

 Test => UUT => Collaborators

 Car => Engine

 Test: Car => Car => MockEngine

● Mocking framework (GTest, Trompeloeil,...)
● Dependency injection
● Collaborators
● Wrappers (Filesystem)

Kent Beck

● Godfather of unit testing
● Inventor of

‘Extreme Programming’
● Part of the

‘Agile Development’ Group

FURTHER READING

Links

LinkedIn: Marcel Roth, Dino Pollano

https://github.com/Audiodroid/Smooosie

Property-based testing video

Unit-Testing framework: Catch2

juce-end-to-end (Focusrite)

Test-Driven Development for Embedded C

Unit testing guru: Kent Beck

https://www.linkedin.com/in/marcelroth/
https://www.linkedin.com/in/dinopollano/
https://github.com/Audiodroid/Smooosie
https://www.youtube.com/watch?v=IYzDFHx6QPY
https://github.com/catchorg/Catch2
https://github.com/FocusriteGroup/juce-end-to-end/tree/main
https://pragprog.com/titles/jgade/test-driven-development-for-embedded-c/
https://en.wikipedia.org/wiki/Kent_Beck

Any Questions or Further Thoughts?

