EMULATING THE TX81Z

TECHNIQUES FOR REVERSE ENGINEERING HARDWARE SYNTHS

CESARE FERRARI

Introducing the Yamaha TX81Z
Introduced in 1987

A 4 operator FM synth, supporting multiple oscillator waveforms, with 8
algorithms

*8 voices, 8 voice polyphony

«Stereo output

oo

e
{oRAE) [|- {onsen)

e P e Ll A e o LIRS S, 5 ”1_3: ol

— e e e

N

- | m A 5 ' ‘k“k“k . . ‘ MODE’SELECT : i : L 2, 2

. FM‘NQ& m‘(@ﬁ o H ORE/ | EDIT/

\ ST | etay/ ol | /
- \ EG COPY| VUTILUTY | comPARE! pERFORMI | o5 e
\ } 3

o . ¥

: : PARAMETER DATA ENTRY MASTER VOLUME

I = O

—

HBALANE LIOR FONVINEO SR

HAEAANE OB AOOA

NOLLONHILSNOD AHOWaw Ziaxa

PLAY SINGLE PLAY PERFORMANCE

{ : : b
EDIT uTILITY PERFORMANCE EDIT) » ven-
7 ALGORITHM SELECT 1 MASTER TUNE 1 KEY ASSIGN MODE % %0 3 ; T R
2 ::axuauzva 2 MIDI CONTROL 2 MAXIMUM NOTES > §'\ 2 ¢ CASSETTE THRU ouT N) » @ m
3 MEMORY PROTE 3 VOICE NUMBER - 2 X y o
4 SENSITIVITY :' COMBINE Wcr 4 MID| RECV CH gc \= R - o Gae N ™ = CAUT > o MAM MODEL TX81Z
5 FREQUENCY 5/CASSETTE CONTROL 5 NOTE LIMIT/LOW 2@\ N o e S Y o ION 10 REDUCE THE RISK OF ELECTRIC SHOCK. DO I/MIX PATENTS — US4018121 - FRANCE 7509274
6 OSCILLATOR WAVE 6 EDIT EFFECT 1 - 6 NOTE LIMIT/HIGH D S - - 5y &I . ‘\ NOT BEMOVE COVER. NO USER-SERVICEABLE PARTS INSIDE, BRITISH 1505712 JAPAN 1072695
2 o0k il e xR AL TSN 1 R REFER SERVICING TO QUALIFIED SERVICE PERSONNEL. Y 2 NIFFON GARKT GO, LT
S o e Sl gl & MIDI NOTE SHIFT gARNING TO REDUCE THE RISK OF FIRE OR ELECTRIC (L J120V BW 6OHz ~o
9 OUT LEVEL © EOrT AMGRO TINING o VOLUME -) co?a?nﬁé Zowrx)r EXPOSE THIS PRODUCT TO RAIN OR MOISTURE MADE IN JAPAN -
10 SCALING 10 INIT- VOICE 10 OUTPUT ASSIGN - H THE LIMITS FOR A "CLASS B” COMPUTING o
RN, sppelbetar e ‘ DEVICE PURSUANT TO SUBPART J OF PART 15 OF FCC RULES _Sﬂlm HJIE7

ALGORITHM 12 MICRO TUNING SELECT
13 EFFECT SELECT

x—f 14 PERFORMANCE NAME
: 2 s 4 PERFORMANCE UTILITY.
1 VOICE EDIT
{g @l ug L ol ke) 2 INIT PERFORMANCE
2 s 7 5 3 MEMORY PROTECT

MULT] TIMBERAL FM TONE GENERATOR TX81Z OPERATION GUIDE

Introducing the Yamaha TX81Z

- Totally digital design - no analog filters

*Supports midi

e

HRALANE LIOR ADNVINEO A B NE LOa A0,
v S B Al ~

 YDMBMA

| 2 1 4 { 7 . i+ v 1/ -
FM TONE GENERATOR -~ \ STORE/ | { _eoms pLAY/ | l | URSOR.
{ | v/ |l cl
= S - \ EG COPY| VUTIUTY | compaRe! perrorM | / DEC Lt N
X \ } 2

MODE SELECT S
) e e e — e e

NOLLONHILSNOD AHOWaw Ziaxa

A 1

¥

-

PLAY SINGLE PLAY PERFORMANCE
EDIT uTILITY PERFORMANCE EDIT : AR = ——————
7 ALGORITHM SELECT 1 MASTER TUNE 1 KEY ASSIGN MODE %S %_ 379 < CASSETTE _‘_ ~
2 FEEDBACK LEVEL 2 MIDI CONTROL 2 MAXIMUM NOTES ;\ < HRU ouT IN - g \ ; 'H @ m MA ”A MODEL TX81
3 LFO 3 MEMORY PROTECT 3 VOICE NUMBER \ 3 A 1 R ’
F/seNaTATY S COMBRNE OO, S MOLReECV.CH S S & .) GENN \ CAUTION TO REDUCE THE RISK OF ELECTRIC SHOCK, DO I/MIX PATENTS = US 4018121 ~ FRANCE 7509274
& FREQUENCY &' CASSETTE CONTROL 5 NOTE LIMIT/LOW A ® s V. a 0 ‘ o ‘\ NOT BEMOVE COVER. NO USER-SERVICEABLE PARTS INSIDE. . BRITISH 1505712 JAPAN 1072895
6 OSCILLATOR WAVE 6 EDIT EFFECT 1 - 6 NOTE LIMIT/HIGH _ AL @ A A s 3 LY REFER SERVICING TO QUALIFIED SERVICE PERSONNEL. NIPPON GAKKI CO, LTD.
DETUNE EDIT EFFECT ST DETUNE N INSN § N WARNING ” i 2l %,).
% £ & ZAINST DETUNE \ TO REDUCE THE RISK OF FIRE OR ELECTRIC (7.9 120V S60Hz o
8 ENVELOPE GENERATOR 8 EDIT EFFECT 3 & MIDI NOTE SHIFT: SHOCK, DO’ NOT EXPOSE THIS PRODUCT TO RAIN OR MOISTURE. & = IN UA :
9 OUT LEVEL © EDIT MICRO TUNING 9 VOLUME - MIDI COMPLIES WITH THE LIMITS FOR A "CLASS B” COMPUTING SER NG
10 SCALING 10 INIT VOICE 10 OUTPUT ASSIGN -] DEVICE PURSUANT TO SUBPART J OF PART 15 OF FCC RULES. . HJIE7
11 FUNCTION 11 RECALL EDIT 11 LFO SELECT ; — : :
12 MICRO TUNING SELECT = e

ettt 13 EFFECT SELECT

Z rﬁ / ? / / ﬁ 14 PERFORMANCE NAME
' 2 5 = 4; PERFORMANCE UTILITY
1 VOICE EDIT
EF [fmon s e 2 preonee
s 6 7 B 3 MEMORY PROTECT

MULTI TIMBERAL FM TONE GENERATOR TX81Z OPERATION GUIDE

Introducing the Yamaha TX81Z

Famous for the ‘Lately Bass’ preset which has appeared on countless recordings

Q

Toni Scott - That's How I'm Living (1988) (MTV)

~nr— - ’ 90srave * 1.6K views * 7 years ago
B o :

Y&MGBNHA PLAY ‘SINGLE
127} 3 ERATOR

e 121 LateluBass

The System - You're In My System (Atmospheric Dub) [Ibadan] (1998)

' .l FAUX CODA -+ 205K views * 9 years ago

CUHE IV MY SYSTIM
Fimpperk
ol aod [d

Lately Bass pitei

(¥0=3) by Tom Hall _
‘ \ Haddaway - What Is Love [Official 4K]
Playlist * 29 videos * 2,612 views ,

CoconutMusicGermany « 344M views + 10 years ago
The Lately Bass preset from the Yamaha TX81Z is used in
each release in this p ...more

P Playall By &=

Making a 90s Banger with the Yamaha TX81Z!

Alex Ball * 192K views * 4 years ago

Satisfaxion. The volume. The Solid Collective. Can You Feel It

juandibreakbeat « 127K views * 12 years ago

Fluke - Atom Bomb

PostEchoCorp * 98K views * 14 years ago

Orbital - Halcyon On and On

8 RoundxSeal * 21M views * 15 years ago

Introducing the Yamaha TX81Z

When buying vintage gear, check the mains voltage...

Home > Yamaha > Yamaha Keyboards and Synths > Yamaha TX81Z Rackmount FM Tone Generator 1987 - 1988

Yamaha TX81Z Rackmount FM
Tone Generator

Free delivery

Make 3 payments of £66.66. Learn more
Klarna

8+, T&C apply, Credit subject to status

t : - 3 Free Shipping from Southport, United Kingdom
@ YAMAHA vopeL Txeiz

PATENTS US4018121 FRANCE 7509274
BRITISH 1505712 JAPAN 1072895

7y | @, YAMAHA CORPORATION |
0y 100V 8W S0/60Hz

»~

MADE IN JAPAN o s g BNy 1.8 Add to Basket Make an offer

SER. N
Ry P

O Watch

Listed: 2 months ago Views: 104 Watchers: 6 Offers: 0

Dan's Gear
Southport, United Kingdom

Choosing an emulation strategy

So we want to emulate it, let’'s sample it - easy right?

For each preset we would require:

*Multiple samples per octave

*Loop points per sample to allow sounds to sustain
*Multiple velocity layers

*No support for aftertouch, modulation sources etc etc

Choosing an emulation strategy

So instead, how about dismantling the instrument,
decapping the chips, taking photos of them, reverse
engineering the processor gates, and building an FPGA
model?

Choosing an emulation strategy

Ken Shirriff's blog

Computer history, restoring vintage computers, IC reverse engineering, and whatever

-———— -

Reverse-engineering the Yamaha DX7 synthesizer's sound chip from die photos

The Yamaha DX7 digital synthesizer was released in 1983 and became "one of the most important advances in the history of modern
popular music"’. It defined the sound of 1980s pop music, used by bands from A-ha and Michael Jackson to Dolly Parton and Whitney
Houston. The DX7's electric piano sound can be heard in over 40% of 1986's top hits.* Compared to earlier synthesizers, the DX7 was
compact, inexpensive, easy to use, and provided a new soundscape. "

While digital synthesis is straightforward nowadays, microprocessors * weren't fast enough to do this in the early 1980s. Instead, the DX7
used two custom chips: the YM21290 EGS "envelope" chip generated frequency and envelope data, which it fed to the YM21280~ OPS
"operator" chip that generated the sound waveforms. In this blog post, | investigate the operator chip and how it digitally produced sounds
using a technique called FM synthesis.® *’

| created the high-resolution die photo below by compositing over a hundred microscope photos.” Around the edges, you can see the 64
bond wires attached to pads; these connect the silicon die to the chip's 64 pins. The chip has one layer of metal, visible as the whitish lines
on top. (Power and ground are the thick metal lines.) Underneath the metal, the polysilicon wiring layer appears reddish or greenish.
Finally, the underlying silicon is grayish. The overall layout of the chip is dense rectangles of circuitry with the space between them used
for signal routing. | will discuss these circuitry blocks in detail below.

Die pt 0 Operator chip. Click this photo (or any other) for a magnified version

The photo below shows the integrated circuit with the metal lid removed, showing the silicon die inside. The pins have been flattened in the
photo; they are normally bent downwards, but in a staggered pattern.” The four rows of pins make this a quad in-line package, with twice
the pin density as a regular DIP chip. As a result, this 64-pin chip has a smaller package than a standard 40-pin DIP chip.

https://www.righto.com/2021/11/reverse-engineering-yamaha-dx7.html

The schematic below shows how one stage of the shift register is implemented. The chip uses a two-
phase clock. In the first phase, clock $1 goes high, turning on the first transistor. The input signal goes
through the inverter, through the transistor, and the voltage is stored in the capacitor. In the second phase,
clock ¢2 goes high, turning on the second transistor. The value stored in the capacitor goes through the
second inverter, through the second transistor, and to the output, where it enters the next shift register
stage. Thus, in one clock cycle (¢1 and then ¢2), the input bit is transferred to the output. (The circuit is
similar to dynamic RAM in the sense that bits are stored in capacitors. The clock needs to cycle before
the charge on the capacitor drains away and data is lost. The inverters amplify and regenerate the bit at
each stage.)

clock ¢1 clock $2

s -

=

gnd

Schematic of one stage of the shift register

The diagram below shows the physical implementation of one shift register stage. It's a bit confusing
because there are three layers: the whitish metal on top, doped silicon regions on the bottom (which
appear outlined in black), and polysilicon lines in the middle (which appear reddish or greenish).
Transistors are formed when a polysilicon line crosses doped silicon. A capacitor is created similarly, with
a polysilicon line and doped silicon forming the two plates of the capacitor. An inverter is created from a
transistor that pulls the output to ground, along with a pull-up resistor. (The pull-up resistor is actually
another transistor, specially doped to make it a depletion transistor.)

clock $2

1

clock ¢1 ZEtiTE sttt
transistors

T T

ground ground

Implementation of one bit of the shift reqgister. This matches (

Choosing an emulation strategy

Ok, so instead, let’s build a software emulation. What’s the approach?

1. Build a simplified conceptual model of the architecture using resources
such as manuals and tinkering with the instrument

2. Determine which parts are relevant for the sounds you want to recreate
- there’s no point finding out about bits you don’t need!

3. For the relevant parts, work out how to exercise each to build an
understanding of how they work and behave

4. Implement each of the model components - divide and conquer

TL;DR The manual is aimed at musicians, not engineers, but does at least

TX81Z architecture

list all of the parameters, and what they are for

Z WORK ?

e
e e e

The TXB1Z has two main modes. Each main mode has three “sub-modes”’.

Press twice, remains lit,

-

=

SINGLE el L/ |

PLAY (Single)
Select and play any

voice using chords of
up to 8 notes (p.11).

EDIT (Single)

Create your own voices
or modify an existing
voice (p.12).

UTILITY (Single)

p) *Save and load data (p.28). =
UTILITY *Set microtone tables (p.31). UTILITY
*Set program change table (p.26).
*Set pan, delay and chord
effects (p.29).
* And other useful functions.

Here are the main memory areas inside the TX81Z,
Voice Memory (p.11)
There are 5 voice memory banks, each with 32 voices.

Banks A-D are preset, and cannot be changed. Bank
| is for you to store your own voices in.

PERFORMANCE

PLAY (Performance)

The TX81Z acts as up to

8 independent instruments

as specified in the Performance
Memory that you select (p.35).

EDIT (Performance)

Change the settings of a
Performance Memory (p.37).

UTILITY (Performance)

*Set a Performance to a
basic setting (p.42).
* And other useful functions.

Performance Memory (p.35)

Each performance memory can set the TX81Z to act

as up to 8 independent instruments, each controlled
on a different channel.

Effect Memory (p.29)

Each performance can use one of the three effects.

Effect 1 (Deolay)

Feedback
Effect Lovel

Etfect 2 (Pan)

Program Change Table (p.26)

Incoming program change messages can select any-
thing you want; voices or performance memories,

Microtune Tables (p.31)

You can use non-standard scales. 11 scales are preset.
The Octave and Full Settings are user programmable.

Effect 3 (Chord)
Kay on note

Program Change Table

TX81Z architecture

TX81Z MEMORY CONSTRUCTION

VOICE EDIT BUFFER : PERFORMANCE EDIT BUFFER

vt I maximum | I wowviouar | _[ro : OUTPUT
m VOICE NO NOTES PERF DATA [~ seLECT [~ VOLUMEL -1 Assian [

STORE : STORE
- VOICE MEMORY PERFORMANCE MEMORY :
. INTERNAL PRESET USER L——— 1 BULK TRANS/RECEIVE —————=
4 —— ——— — ——— —— 32 BULK TRANSMIT———* MIDI
INTERNAL 1 A1 B1 c1 D1 PFM 1 ; 32 BULK RECEIVE —G~ 0—
INTERNAL 2 A2 B2 c2 D2 PFM 2 .
MEMORY PROTECT

i
-

INTERNAL 32 A32 B 32 c32 D32 PFM 24

=

v -

TX81Z architecture

K2000R

MUSICIAN'S GUIDE

L e gt gt o “
1 o iEe R S L T ’35 !

LR

KURZWEIL
THFLnF T SpaTentd

i

il

/ .;t!‘z;"

4-Pole Lowpass Filter:
Resonance

4-Pole Lowpass Filter:
Separation in Octaves

Amplitude in dB

Amplitude in dB

Frequency in Hertz

1000 10000

24

Cutoff frequency = C 5;
separation = 0;
resonance from -12 to 24 dB

Frequency in Hertz

Q00 10000

———r A\

Cutoff frequency = C 7;
resonance = 12 dB;
separation from -2 to +2

DSP Functions
Filters

100000

100000

This combines 2POLE LOWPASS and LOPAS2 in one three-stage function. The parameters on
the F1 FRQ control input page affect the cutoff frequencies of both filters. The parameters on
the F2 RES page affect the resonance of 2POLE LOWPASS. The parameters on the F3 SEP page
shift the cutoff frequency of LOPAS2, creating a separation between the cutoff frequencies of
the two filters. Positive values raise the cutoff frequency of LOPAS2, while negative values
lower it. If no separation is applied, there’s a 24 dB per octave rolloff above the cutoff frequency.

TX81Z architecture

So let’s instead start playing around with the instrument, and find which
features are and aren’t important for the sounds we care about.

Look for parameters which are set to zero, routing which isn’t used, and
determine what controls are important to achieve the sound you want.

Take patches you like, fiddle with parameters, turn stuff off, see what is
Important.

Do this for a range of useful sounds...

TX81Z architecture

Things we don’t care about:

* Performance Mode

o Effects (‘pseudo’ reverb, pan, delay, chorus)
* Microtonal scales

e LFO

* Breath controller

* Oscillators features Envelope Shift and Level Scaling

How do we analyse the instrument?

Computer

(Analysis software of choice)

TX81Z architecture

Envelope Oscillator \

Envelope Oscillator
Output

Envelope Oscillator 7
Envelope Oscillator

But what’s going on in the modulation matrix?

TX81Z architecture

8 Modulation Algorithms

* The algorithm determines which operator
(oscillator) modulates which other oscillator(s)

 Operators can form modulation chains

* Operator 4 can modulate itself (feedback)

Envelope

Envelope

Envelope

Envelope

TX81Z architecture

Oscillator 4

Oscillator 3

Oscillator 2

Oscillator 1

Output

What is FM?

So what is FM anyway?

‘Frequency modulation (FM) is the encoding of information in a carrier wave
by varying the instantaneous frequency of the wave.’

wikipedia
Carrier

Modulator

o\

What is FM?

FM Modulation implementation in Cmajor

Sine oscillator at frequency freq + modulator * modulationAmount

processor OscillatorFM (float freq, float modulationAmount)

{

input stream float modulator;
output stream float out;

void main()

{
var phaseInc = float (twoPi * freq / processor.frequency);
float32 phase;

Loop
out <~ sin (phase);

phase = (phase + phaseInc + modulationAmount * modulator) % float (twoPi);
advance();

TX81Z FM test

Create an ‘init’ patch, which is a simple sine oscillator, and add a modulator
at a ratio of 0.5.

If the oscillator is at 1Khz, the modulator will be 500Hz

TX81Z

ORAY AN AN A A
VARIAVARAVARIAVARAVARIAVE

What is Phase Modulation?

So what is PM anyway?

‘It encodes a message signal as variations in the instantaneous phase of
a carrier wave.’

wikipedia

Carrier

Modulator

PM

PM Modulation vs FM Modulation

processor OscillatorFM (float freq, float modulationAmount) processor OscillatorPM (float freq, float modulationAmount)
{ {
input stream float modulator; input stream float modulator;
output stream float out; output stream float out;
void main() void main()
{ {
var phaseInc = float (twoPi *x freq / processor.frequency); var phaseInc = float (twoPi *x freq / processor.frequency);
float32 phase; float32 phase;
Loop Loop
{ {
out <- sin (phase); out <- sin (phase + modulationAmount x modulator);
phase = (phase + phaseInc + modulationAmount * modulator) % float (twoPi); phase = (phase + phaselnc) % float (twoPi);
advance() ; advance();
} }
} }

\/ VARV, \/ \/

%%>ﬁ\%%>ﬁ\%%

/\ A /\ AWA /\ /\ /\ /\ A /’;

AN AN AL AL AN
VARAVAIVATAVAAVAAVE

Frequency Plot of PM output vs TX

60
I M | 70

100

110
l 120

30 70 100 200 300 500 700 1k 2k 3k 5k Tk 10k Hz

o
(o)

dB
10

20

TX81Z

100

110

120

YM3012 DAC

e 10 bit resolution

* 16 bit dynamic range, using 3 bit exponent (analog shift)

¢l
CLOCK LOAD

YM3012: DAC-MS (hereinafter referred to as DAC) is a floating D/A converter with serial ;
input for two channels . It can generate analog output (dynamic range 16 bits) of 10-bit Illl"l'l

mantissa section and 3-bit exponent section on the basis of input digital signal.

To BUFF MP
(ANALOG OUT)

Emulating the YM3012

*Quantise signal, add noise, add mains hum

// The TM3012 has a 16 bit dynamic range, but 10 bit resolution processor Quantiser

graph Ym3012DacEmulation {

{ input stream float in;
input stream float in; output stream float out;

output stream float out;
float quantise (float f)

node quantiser = Quantiser; {
node noise = std::noise::White; let 1 = 32768 + int (f % 32767.0f);
node mainsHuml = std::oscillators::Sine (float, 50.0f); let shift = min (clz (i) - 16, 7);
node mainsHum2 = std::oscillators::Sine (float, 100.0f); let shifted = i << shift;
node noiseFilter = filter::Processor (filter::Mode::lowPass, 12000.0f); let quantised = shifted & Oxffc@;
return float ((quantised >> shift) - 32768) x (1.0f / 32767.0f);

namespace filter = std::filters::tpt::onepole; +
connection void main()
{ {

in -> quantiser -> noiseFilter.in; Eoop

noise.out * 0.001f -> noiseFilter.in;
noiseFilter.out -> out;

mainsHuml.out *x 0.00002f -> out;
mainsHum2.out *x 0.00005f -> out;

out <- quantise (in);
advance()

Frequency Plot of PM output vs TX

dB
10
20
30
40

QO

120

(=]
—
—

PM +

YM3012

Hz

10k

7k

5k

3k

2k

1k

200

10
20

dB

100
110
120

TX81Z

Let’s build the oscillator

Envelopeln

Modulatorin

Oscillator

ERE R

Let’s build the oscillator

Our oscillator will be a phase modulation based oscillator,
with the following parameters:

 Waveform Shapes
* Frequency (fixed and multiplier)

* QOutput (modulation) levels

e Feedback

Let’s build the oscillator - Waveform

8 waveform shapes, listed in the manual

The shapes are all based on a sine oscillator, chopped into parts

The TX812Z is the first Yamaha synthesizer to offer FM synthesis with 7 new
Oscillator Wave waveforms in addition to sine waves.

Each operator can be independently set to one of the following 8 waveforms,

The selected waveform will be graphically indicated in the LCD.

011116~ Ay & .
OSW W5 W2 W§ W7

These new waveforms can be used as both carriers and modulators. Sine waves
are pure tones. The seven additional waveforms have additional harmonics
already in them. This allows for complex waveforms to be created from fewer
operators. For ideas on how to use the new waveforms, examine the preset
voices. The harmonic content of each waveform is described on p.50.

TX81Z Oscillator Waveforms

getWaveshape function using the diagrams in the manual to build the
different oscillator patterns from an input phase (0 .. 1)

float getWaveshape (int waveshape, float phase)
{
phase = fmod (phase, 1.0f);

if (waveshape == 1 return sinOfPhase (phase);
if (waveshape == 2
if (phase < 0.25f) return sinOfPhase (phase - 0.25f) + 1.0f;
if (phase < 0.5f) return sin0OfPhase (phase + 0.25f) + 1.0f;
if (phase < 0.75f) return sin0OfPhase (phase - 0.25f) - 1.0f;
return sinOfPhase (phase + 0.25f) - 1.0f;

if (waveshape == return phase < 0.5 ? sin0OfPhase (phase) : 0.0f;
if (waveshape ==
if (phase < 0.25f) return sinOfPhase (phase - 0.25f) + 1.0f;

if (phase < 0.5f) return sin0OfPhase (phase + 0.25f) + 1.0f;
return 0.0f;

TX81Z Oscillator Waveforms

Comparing the first three waveforms with the manual shows roughly the
same shape, but something else going on...

Oscillator

TX81Z

TX81Z Oscillator Waveforms

Just adding a DC blocking filter and the waveforms are more aligned

Oscillator

TX81Z

Envelope

Envelope

Envelope

Envelope

TX81Z architecture

Oscillator 4

Oscillator 3

Oscillator 2

Oscillator 1

DC
Blocking

Filter

Output

TX81Z Oscillator Output Level

Working out the instrument scaling for output level

1. Build a simple patch with a single oscillator sine wave (ho envelope)

2. Vary the output level, recording the peak value achieved at each level.

3. Plot on a graph, find a function that matches the curve

TX81Z Oscillator Output Level

processor Test

{

input stream float in;
output event (std::notes::NoteOn, std::notes::NoteOff) eventOut;
output event float peakLevel;

void main()

{
eventOut <- std::notes::NoteOff (@, 48.0f, 1.0f);
loop
{
eventOut <- std::notes::NoteOn (0, 48.0f, 1.0f);
float peak = 0.0f; Note-Off: Channel 1 Velocity
Note-On: Channel 1 Velocity
loop (1000) Note-Off: Channel 1 Velocity
. Note-On: Channel 1 Velocity
advance(); Note-Off: Channel 1 Velocity
Note-On: Channel 1 Velocity
loop (int (processor.frequency / 2)) Note-Off: Channel 1 Velocity
/| Note-On: Channel 1 Velocity
peak = max (peak, abs (in));
advance() ;
}
. -7.001480579376221
peakLevel <- std::levels::gainTodB (peak); -7.0146589279174805
eventQut <- std::notes::NoteOff (@, 48.0f, 1.0f); -7.015223503112793
-7.025267601013184
-7.0233893394470215
Loop (1000) -7.029960632324219
advance(); -7.039812088012695
} -7.041423797607422
}

TX81Z Oscillator Output Level

; y = 0.7228x - 72.923

loat levelToGain (float level)

= —-h

return std::levels::dBtoGain ((0.723f * level) - 72.9f);

-

TX81Z Oscillator Feedback

Oscillator feedback, only 8 levels supported (0 through 7).

For each level, record a plain sine output with this level of feedback, and
use spectrum analyser to tune equivalent within our oscillator.

The curve wasn’t a good fit, so use a lookup table

Table 1 0.3
y = 0.0068x2 - 0.0108x + 0.0047
Feedback Factor

0 0
1 0.008
2 0.015
3 0.024
4
5

0.225

0.07
0.12
6 0.19
7 0.26

Oscillator demo

Envelope

Envelope

RN

Envelope

The envelopes are multi-stage, with different shapes for attack and
decay/release phases. How to determine the shape?

As before, build a test sound using a simple oscillator, but using the
envelope features you want to understand.

Generate test data to determine a strategy.

Envelope

Write a basic envelope follower:

Play a high pitched note, rectify, determine peak amplitude in a time
window.

float peak = 0.0f;

loop (int (processor.frequency / 2))

{
peak = max (peak, abs (in));
advance();

}

000000000000000

Envelope

Remember - the discrete sampled signal values do not correspond to signal
amplitude.

Mitigate by averaging over multiple waveform cycles, choice of oscillator
shape, more samples per cycle (e.g. higher sample rate, lower note pitch)

Envelope

Analysis of the sounds of interest showed attack was always ‘as fast as
possible’ so a simple model using a linear attack was suitable

Decay Rates and Sustain Rates looked like exponential decay curves, so
a ‘time for -24db attenuation’ was measured, and a curve fitted to this.

Envelope Key Velocity Scaling

For each KVS setting, generate an array of note amplitudes for each midi
velocity.

float calculatePeakForVelocity (int v)

{
eventOut <- std::notes::NoteOn (@, midiNote, float (v) / 127.0f);

_ _ float peak = 0.0f;
void main()

{

// Skip the first part to allow the voice to settle

loop (1000)
advance() ;

eventQut <- std::notes::NoteOff (@, midiNote, 0.0T);

Loop
{

loop (int (processor.frequency / 32))

J
L

float[128] velocityScaling;

peak = max (peak, abs (in));

for (wrap<128> i) o eancear

velocityScaling[i] = calculatePeakForVelocity (i);

. console <= velacityScating; eventQut <- std::notes::NoteOff (@0, midiNote, 0.0T);

Lloop (1000)
advance() ;

return std::levels::gainTodB (peak);

Envelope Key Velocity Scaling

* Discrete amplitude levels in
output

 Could implement as LUT

e |nstead, use fitted curves

Envelope

volid mailin

let envelopelLimit = 0.0001f,;

Envelope written as a cascade of oo
loops, one per segment :

while (! active)
advance();

Attack linear, other stages written float value;
as exponential decay curves

while (active && value < 1.0f)
{
value += attackFactor;
out <- keyScaling * value;
advance() ;

}

if (active)

{
value = 1.0f;

// Decavl
while (active && value > decaylTarget

value %= decaylFactor;
out <- keyScaling * value;
advance();

Envelope demo

Modulation Matrix

Modulation Matrix

PRLL

Modulation Matrix

Feedback requires delay

Modulation
Matrix

Modulation Matrix

processor AlgorithmMatrix

{

input event int algorithmln;

input stream float oscl(4];

Handle algorithm changes

output stream float mod|[4];
output stream float out;

event algorithmIn (int i

Write a loop for each algorithm

void main

Route the oscillators to the correct
modulation destinations :

Output the correct source

}

int algorithm = 1;

mod | 2
mod |1
mod | @
out <- o0sc|0];
advance();

algorithm = 1i;

while (algorithm == 1)
)

<- 0SC|3];
<- 0SC|2];
<- 0scl|l);

while (algorithm == 2)
)

Could be implemented as a complete
modulation matrix...

mod |1
mod |1
mod | @
out <- o0sc|0];
advance() ;

<- 0scl|3];
<- 0ScC|2];
<- 0scll];

Synth demo

Conclusions

Decide what is important, and what is not. Spend your time analysing
and implementing the important parts of the behaviour

Use signal processing techniques to exercise and analyse the behaviour
you care about. Write processing tools to help with the analysis.

Divide and Conquer - work on the components in turn, refer back to the
original instrument to validate your work

Innovate. Use the components in unigue ways to build new instruments.

Thank you!

Any questions ?

https://cmajor.dev

https://cmajor.dev/docs/Examples/TX81Z
https://github.com/cesaref/TX81Z

https://cmajor.dev

