


•Introduced in 1987


•A 4 operator FM synth, supporting multiple oscillator waveforms, with 8 
algorithms


•8 voices, 8 voice polyphony


•Stereo output

Introducing the Yamaha TX81Z



•Totally digital design - no analog filters


•Supports midi

Introducing the Yamaha TX81Z



Famous for the ‘Lately Bass’ preset which has appeared on countless recordings

Introducing the Yamaha TX81Z



When buying vintage gear, check the mains voltage…

Introducing the Yamaha TX81Z



So we want to emulate it, let’s sample it - easy right?


For each preset we would require:


•Multiple samples per octave


•Loop points per sample to allow sounds to sustain


•Multiple velocity layers


•No support for aftertouch, modulation sources etc etc

Choosing an emulation strategy



So instead, how about dismantling the instrument, 
decapping the chips, taking photos of them, reverse 
engineering the processor gates, and building an FPGA 
model?

Choosing an emulation strategy



Choosing an emulation strategy

https://www.righto.com/2021/11/reverse-engineering-yamaha-dx7.html



Ok, so instead, let’s build a software emulation. What’s the approach?


1. Build a simplified conceptual model of the architecture using resources 
such as manuals and tinkering with the instrument


2. Determine which parts are relevant for the sounds you want to recreate 
- there’s no point finding out about bits you don’t need!


3. For the relevant parts, work out how to exercise each to build an 
understanding of how they work and behave


4. Implement each of the model components - divide and conquer 

Choosing an emulation strategy



TX81Z architecture

TL;DR The manual is aimed at musicians, not engineers, but does at least 
list all of the parameters, and what they are for



TX81Z architecture



TX81Z architecture



TX81Z architecture

So let’s instead start playing around with the instrument, and find which 
features are and aren’t important for the sounds we care about.


Look for parameters which are set to zero, routing which isn’t used, and 
determine what controls are important to achieve the sound you want.


Take patches you like, fiddle with parameters, turn stuff off, see what is 
important.


Do this for a range of useful sounds…



TX81Z architecture

Things we don’t care about:


• Performance Mode


• Effects (‘pseudo’ reverb, pan, delay, chorus)


• Microtonal scales


• LFO


• Breath controller


• Oscillators features Envelope Shift and Level Scaling



How do we analyse the instrument?

TX81Z

Midi Interface

Audio Interface 

Computer 
(Analysis software of choice)



TX81Z architecture

Envelope Oscillator

Envelope

Envelope

Envelope

Oscillator

Oscillator

Oscillator

Modulation 
Matrix Output

But what’s going on in the modulation matrix?



TX81Z architecture

1

2 3

4
8 Modulation Algorithms


• The algorithm determines which operator 
(oscillator) modulates which other oscillator(s)


• Operators can form modulation chains


• Operator 4 can modulate itself (feedback)



TX81Z architecture

Envelope Oscillator 4

Envelope

Envelope

Envelope

Oscillator 3

Oscillator 2

Oscillator 1 Output



What is FM?

So what is FM anyway?


‘Frequency modulation (FM) is the encoding of information in a carrier wave 
by varying the instantaneous frequency of the wave.’


wikipedia

Carrier


Modulator


FM



What is FM?

FM Modulation implementation in Cmajor


Sine oscillator at frequency freq + modulator * modulationAmount



TX81Z FM test

Create an ‘init’ patch, which is a simple sine oscillator, and add a modulator 
at a ratio of 0.5.


If the oscillator is at 1Khz, the modulator will be 500Hz

TX81Z



TX81Z

Carrier


Mod


FM

TX81Z FM test



What is Phase Modulation?

So what is PM anyway?


‘It encodes a message signal as variations in the instantaneous phase of 
a carrier wave.’


wikipedia

Carrier


Modulator


PM



PM Modulation vs FM Modulation



TX vs Phase Modulation

TX81Z

Carrier


Mod


PM



Frequency Plot of PM output vs TX

TX81Z

PM



YM3012 DAC

• 10 bit resolution


• 16 bit dynamic range, using 3 bit exponent (analog shift)



Emulating the YM3012

•Quantise signal, add noise, add mains hum



Frequency Plot of PM output vs TX

TX81Z

PM +


YM3012



Let’s build the oscillator

Oscillator 
Waveshape

Output Level

Freq (fixed)

Freq (multiplier)

Feedback

EnvelopeIn

ModulatorIn

Out



Let’s build the oscillator

Our oscillator will be a phase modulation based oscillator, 
with the following parameters:


• Waveform Shapes


• Frequency (fixed and multiplier)


• Output (modulation) levels


• Feedback



Let’s build the oscillator - Waveform

8 waveform shapes, listed in the manual


The shapes are all based on a sine oscillator, chopped into parts



TX81Z Oscillator Waveforms

getWaveshape function using the diagrams in the manual to build the 
different oscillator patterns from an input phase (0 .. 1) 



TX81Z Oscillator Waveforms

Comparing the first three waveforms with the manual shows roughly the 
same shape, but something else going on…

TX81Z

Oscillator



TX81Z Oscillator Waveforms

Just adding a DC blocking filter and the waveforms are more aligned

TX81Z

Oscillator



TX81Z architecture

Envelope Oscillator 4

Envelope

Envelope

Envelope

Oscillator 3

Oscillator 2

Oscillator 1
DC 

Blocking 
Filter

Output



TX81Z Oscillator Output Level

1. Build a simple patch with a single oscillator sine wave (no envelope)


2. Vary the output level, recording the peak value achieved at each level.


3. Plot on a graph, find a function that matches the curve

Working out the instrument scaling for output level



TX81Z Oscillator Output Level



TX81Z Oscillator Output Level



TX81Z Oscillator Feedback

Oscillator feedback, only 8 levels supported (0 through 7).


For each level, record a plain sine output with this level of feedback, and 
use spectrum analyser to tune equivalent within our oscillator.


The curve wasn’t a good fit, so use a lookup table



Oscillator demo



Envelope

Envelope 

Attack Rate

Decay Rate 1

Decay Level 1

Decay Rate 2

Release Rate

Out

KVS

KRS



Envelope

The envelopes are multi-stage, with different shapes for attack and 
decay/release phases. How to determine the shape?


As before, build a test sound using a simple oscillator, but using the 
envelope features you want to understand.


Generate test data to determine a strategy.



Envelope

Write a basic envelope follower:


Play a high pitched note, rectify, determine peak amplitude in a time 
window.



Envelope

Remember - the discrete sampled signal values do not correspond to signal 
amplitude.


Mitigate by averaging over multiple waveform cycles, choice of oscillator 
shape, more samples per cycle (e.g. higher sample rate, lower note pitch)



Envelope

Analysis of the sounds of interest showed attack was always ‘as fast as 
possible’ so a simple model using a linear attack was suitable


Decay Rates and Sustain Rates looked like exponential decay curves, so 
a ‘time for -24db attenuation’ was measured, and a curve fitted to this.



Envelope Key Velocity Scaling

For each KVS setting, generate an array of note amplitudes for each midi 
velocity.



Envelope Key Velocity Scaling

• Discrete amplitude levels in 
output


• Could implement as LUT


• Instead, use fitted curves



Envelope

Envelope written as a cascade of 
loops, one per segment


Attack linear, other stages written 
as exponential decay curves




Envelope demo



Modulation Matrix

Modulation Matrix 

Algorithm

Osc 2

Osc 4

Osc 3

Osc 1

Mod 2

Mod 4

Mod 3

Mod 1

Out



Modulation Matrix

Osc 1

Modulation 
Matrix

OutputDC Filter

Osc 2

Osc 3

Osc 4

Feedback requires delay



Modulation Matrix

Handle algorithm changes


Write a loop for each algorithm


Route the oscillators to the correct 
modulation destinations


Output the correct source


Could be implemented as a complete 
modulation matrix…



Synth demo



Conclusions

• Decide what is important, and what is not. Spend your time analysing 
and implementing the important parts of the behaviour


• Use signal processing techniques to exercise and analyse the behaviour 
you care about. Write processing tools to help with the analysis.


• Divide and Conquer - work on the components in turn, refer back to the 
original instrument to validate your work


• Innovate. Use the components in unique ways to build new instruments.



Thank you!

Any questions ?

https://cmajor.dev


https://cmajor.dev/docs/Examples/TX81Z


https://github.com/cesaref/TX81Z

https://cmajor.dev

