
Angus Hewlett

ADC November 2024

Branchless Oscillators for fun and profit

if

To DSL or not to DSL?

Single Program Multiple Data

Branches? What branches?

Language features: 
if

switch

for 
do/while

“?” ternary operator 
min/max (maybe.)

memory operations (most.)

synchronisation primitives 
vtable lookups 

“Language VM”

Aside: The C++ virtual machine

“Language VM”

Observable behaviour is well-defined…

.. but compilers may achieve this however they please.

If performance depends on the
compiler’s decisions, this may be fragile.

Optimising compilers make a best effort…

we can often help by giving it more to work with,

but sometimes their “help” is counterproductive.

Machine instructions and instruction flow

“Machine-language VM”

Add

Compare
Branch

Subtract

https://godbolt.org

Aside: The machine-language virtual machine

Machine-language VM

Instruction fetch address 
Execution pipeline

Address-space remapping

Caches (L1I, L1D, L2, L3…)

Rename registers

Branch predictors

Load / store queues / buffers 
Shared execution resources (SMT)

NOT PICTURED:

Why branchless?

TLP: Thread- (or process)- level parallelism: Cores

ILP: Instruction-level parallelism: Execution pipeline (“front end”,
“back end”)

DLP: Data-level parallelism: SIMD lanes

Parallelism recap.

Apple M1: “An octa/deca-core superscalar CPU with 14-wide dispatch and 128 bit NEON SIMD units.”

Core designs are (mostly) common across a given CPU family / generation.

Designs vary but these principles are generally applicable (ARM “A”-class & x64).

Thread-level parallelism? Why not?

✦ Already used by the host & the OS

✦ Optimal for big chunks of work (>100µs / 10⁶ instructions)

✦ Data / core / cache synchronisation and safety can be complex
& expensive

✦ Doesn’t belong in your inner loop

Each type of parallelism tends to be one-shot: best used at one hierarchical level only.

Assumption: No SMT. No in-lane vectorisation.

https://www.hotsymbol.com/symbol/superscript-six

CPU architecture: The Apple M1 “Firestorm” superscalar RISC CPU core.

Front end: organises the work
Fetch, Decode/“Crack”, Schedule, Rename, Predict

Back end: does the work
Load, Store, Integer/Float Math, Logic, Vector SIMD

CPU scheduler make a best effort - but we can help by
giving it more to work with.

CPU architecture: zoom and enhance…

Four NEON SIMD units each 128 bits wide

(4x float32 single-precision: also int32 & double)

Four instructions per clock (multiply, add, logic, compare…)

16 float32’s per clock tick

Why branchless?
Back-end execution: Instruction latency and data dependencies

NOT audio latency! NOT filter unit-sample delay!

1-10ms 10-25µs 0.25ns

One CPU clock-tick.

a = a * b;

c = c - a;

Executes at t=0

Cannot execute until t=3

(typical figures for simple operations on modern CPUs. 1/x, sqrt(x), log(x), x^n may be much slower)

Simple operations: add, subtract, multiply, min, max, abs, comparisons, bitwise logic, shift/shuffle.

Result Input

Why branchless?
Imagining the CPU as a slower, wider machine

Note: compile- and runtime instruction re-ordering

✦ One-third the clock rate.

✦ 48 data streams with single-cycle latency.

✦ Potential for 16x to 48x greater throughput?

T=0

T=1

T=2

Ready at T~=3

Ready at T~=4

Ready at T~=5

Limits to width: the register file.

ARM: 32 visible 128-bit registers

Note: compile- and runtime instruction re-ordering

X64: 16 visible 256-bit registers

AVX512f: 32 visible 512-bit registers

ARM64EC: 16 visible 128-bit registers

12-wide instruction stream (48-wide data stream) may be too wide: 2.5 registers per stream.

“Spills and refills” result in additional machine instructions, more work for the CPU, and may
degrade performance.

CPU heterogeneity: “Performance”, “Efficiency”, “big.LITTLE”

Performance characteristics - and ideal instruction sequences! - can vary even on the same device.

Evaluate!

During development

Note: compile- and runtime instruction re-ordering

At runtime?

Use high resolution timer

Aim for a run-size in the ~tens of microsecond range (64 samples x 1000 iterations?)

Too small: sampling error. Too large: thread interrupts

Run the whole test 100+ times (=> sub 1s), sort results, discard upper and lower quartiles and average.

Core reassignments can cause negative times; thread interrupts can cause long times.

Foundational techniques

• SIMD intrinsics (wrapped)

• Data interleaving (wrapped)

• Compare-and-mask ops

• Clip-and-scale window functions

• Polynomial approximations

• Avoid unrolling the inner-loop: code size, per-sample dependencies, book-keeping

SIMD & interleaved intrinsics wrapper

• Write clean, readable code

• “No” performance penalty vs intrinsics or asm

• Trivial to generate different layouts & ISAs for

evaluation

• Control-flow statements (if, else…) are unavailable.

• Relational compare operators must evaluate to ‘bool’.

• “?” (Conditional ternary) operator cannot be overloaded.

• Substitute with template-function constructs (“compare_greater”

instead of “>”)

• … but dependent name lookups require import via ‘using’.

• Some developer overhead when moving between AoS & SoA.

Moving target (std::experimental::simd in standard library) .

SIMD & interleaved intrinsics wrapper

• Implements simple math operations (+-*, min/max, comparisons, logic), pick, floor, clip etc.

• Conversion from float - rely on compiler to deduplicate

• Requires some compiler cooperation… 🐉 🐉 🐉

• If in any doubt, use Compiler Explorer or ‘clang -S’

Compare-and-mask operations

Convenience function: pick_xx (input, comparison, val_if_true, val_if_false).

Works for all widths. max, min, clip functions available for simpler cases.

Can use bitwise OR or vector FADD for the final combination step.

Clip-and-scale window functions

fmul (fsub (fmax (fabs (x) ,a), a),scale);

Generates a window function across multiple lanes in four instructions

Polynomial approximations

- Do not parallelise well

- Memory-intensive (harmful to cache?)

- 1024-entry LUT: 4kb

- L1 cache: 32-128kb, ~3 cycles

- L2 cache: 15 cycles per lane

LUT

sin

cos

- Inherently serial*

- Function-call overhead*

- >100 cycles on many CPUs

5th order polynomial (half sine)
4x multiply, 2x FMA

SIMD & interleaved intrinsics wrapper: Recap!

Ease of arbitrary code generation x lightweight benchmarking/profiling = runtime code path selection

SSE4.1

AVX2

AVX512f

NEON

SVE2

Your
algorithm

here

Voice channel
layout

Interleaving factor ILP DLP

Decouples algorithm design from instruction sets and decisions about
optimal interleaving - while maintaining “close to optimal” performance.

Interleaving maximises use of available CPU resources and
hides instruction dependency / data latency.

Let’s make an oscillator: Hello World

Branching - cannot work with SIMD vectors! Branchless version using pickge compare-and-mask.
Pre-subtract for phase reset.

Let’s make an oscillator: Code generation

1x interleaved 2x interleaved 4x interleaved

7 instructions (4 lanes) 10 instructions (8 lanes) 15 instructions (16 lanes)

1.75 inst / lane 1.25 inst / lane 1.066 inst / lane

• Spreads the cost of flow control.

• Hides instruction latency / data dependency.

Let’s make an oscillator: Performance

12-way interleaved (48 voices): 5.5x faster than “classic” SIMD, 22x faster than scalar code.

This oscillator sucks.

Why “only” 22x faster?

Synthetic / artificial case - always profile!

4x interleave = 1.06 per lane 12x = 68 instructions (1.42 per lane)
‘ldp’, ‘stp’ - loads and stores - indicate register spills & refills

Pipelining - second iteration can begin before first completes.

1x interleave = 1.75 per lane

8-wide: 4.5x 1-wide (18x scalar)

12-wide: 5.5x 1-wide (22x scalar)

Improvement 1: triangle

1x absolute

2x compare

2x mask

1x subtract

1x scale

Triangle formula

sign function: pick (x >= 0) ? 1 : -1;

Still not antialiased! But provides a solid foundation for symmetric, band limited polynomials…

At 4-16x interleaving, still ~9x faster than a naive sawtooth implemented in scalar code.

Improvement 2: polynomial sine wave

6x multiply (5x?)

1x add

1x subtract

5th order polynomial, half-cycle sine wave

At 4-16x interleaving, still >5.5x faster than a naive sawtooth implemented in scalar code.

Total error: -54dB

Excluding first four harmonics: -80dB (good to Fs / 8)

Assembly (1x interleave / 4-wide) Assembly (1x interleave / 4-wide)

Improvement 2: polynomial sine wave

Improvement 3: Quadrature oscillator

Computationally simple technique producing a pure sine & cosine wave using rotation

✅ Algorithm is inherently branchless.

❌ Coefficient calculation is costly (needs trig or close approx.)
❌ Iterative - potential for stability problems.

✅ Clean waveforms.

✅ sin & “free” cos wave.

Improvement 3: Quadrature oscillator

Two halves (x, y) execute independently on adjacent units

Multiply-accumulates (FMLA/FLMS) wait 4 cycles for FMULs to complete.

Next iteration must wait 4 cycles for multiply-accumulates to complete.

Five registers required per lane

4 cycles after ‘fmul’.
4 cycles until result.

Result to ‘v0’ for next iteration

… but only 32 available!

Results and comparison

Performance

Numerical stability

Coefficients

Fidelity

Simplicity

Free cos wave!

✅ Polynomial ✅ Quadrature

Improvement three: PolyBLEP

Polynomial Bandlimited Step

“Generate a naive sawtooth, then correct the step-function to
reduce | remove aliasing while preserving harmonics.”

Use a polynomial function to approximate a band-limited step.

Sawtooth, triangle, square, PWM, hardsync …

Improvement three: PolyBLEP

Polynomial Bandlimited Step
“Lookahead-free” using windowed x^2

Improvement three: PolyBLEP

Polynomial Bandlimited Step

Improvement three: PolyBLEP

Polynomial Bandlimited Step

4-5x antialiased saw & square for the price of one naive sawtooth

Improvement three: PolyBLEP

Better polynomials may be available!

Crude window - unacceptable roll-off and aliasing at 1x

Improvement three: PolyBLEP

4x: approaching perfection2x: much better than naive.
-66dB > 10kHz

-78dB <= 10kHz
-78dB > 10kHz

-90dB <= 10kHz

Clean sawtooth & pulse at 4x for the price of a naive sawtooth at 1x

Better polynomials may be available…

Results and conclusion

Branch-free & parallel code offers potentially significant efficiency gains.

Visible register file limits maximum efficiency (SVE2 to the rescue?)

Beware compilers with good intentions…

Profile, profile, profile!

Thank you.

Thanks to:

Dougall Johnson (M1 instruction timings) https://dougallj.github.io/applecpu/firestorm.html

Matt Godbolt (Compiler Explorer) https://godbolt.org/

Cardyak (M1 architectural diagrams) https://x.com/cardyak

Desmos (Graph Plotter) https://www.desmos.com/calculator

Voxengo (SPAN) https://www.voxengo.com

https://www.desmos.com/calculator
https://www.voxengo.com

