

Introduction

▶ Introduction

▶ Background

▶ Immediate mode vs retained mode GUIs

▶ Drawing, window managers, message loops & threads

▶ Plugin GUI specifics

▶ Integrating a specific library (Dear ImGui)

▶ Customising Dear ImGui

▶ Summary and conclusions

▶Introduction

Elk Audio OS

● Linux based operating system

● Off-the-shelf SOCs (ARM and x86)

● Less than 1ms roundtrip latency

● Hard realtime performance

● Open Source (github.com/elk-audio)

https://github.com/elk-audio

Things that interest me

● Plugin host development

● C++ and performance

● Guitars

● 80s/90s grainy rack effects

Code examples in this talk

● C++

● Windows examples when OS specific

● I recommend using a library to abstract away OS

specifics (glfw, SDL2, SFML, JUCE, etc)

▶Background

Not invented here
“Not invented here (NIH) is the tendency to avoid using or buying products, research,
standards, or knowledge from external origins. It is usually adopted by social, corporate, or
institutional cultures. Research illustrates a strong bias against ideas from the outside.”

The IKEA effect
“The IKEA effect is a cognitive bias in which consumers place a disproportionately high value
on products they partially created. The name refers to Swedish manufacturer and furniture
retailer IKEA, which sells many items of furniture that require assembly.”

en.wikipedia.org/wiki/IKEA_effect
en.wikipedia.org/wiki/Not_invented_here

KVR Developer Challenge - the deadline I needed

● Build a new plugin

● Every 2-3 year

● Community driven

● Must be released for free

Roland AG 5 Funny Cat

● Weird envelope filter + compressor /

overdrive hybrid

● Model only Soft Distortion Sustainer

● Crude envelope follower + FET based

VCA

● No explicit diode clipper

Starting point

● Connect bits and pieces

● Know a lot about plugin APIs from the host’s perspective

● Started work on a plugin wrapper

● Missing a GUI framework (writing my own was out of scope)

Things I didn’t want to do

● Bundling React native / web browser

● Bitmaps and filmstrips knobs

● 100+ MB binaries

Inspiration

GUI framework requirements

● Reasonably minimal / Not too bloated

● Vector based

● Easy to draw and make your own widgets / look and feel

● Suitable for inclusion in an audio plugin

● C/C++, cross platform and no weird build system

A new class of GUI libraries

● Nuklear, NanoVG/NanoGUI, zgui, Dear ImGui, OnGui(from Unity)

● Originates from the gaming industry

● Minimalistic and HW accelerated

● Many use a API paradigm called Immediate Mode GUI

Things I liked

● Different take on GUI APIs

● Minimal in code/binary size and in system memory

● Procedural API - very expressive and to the point

● Looked nice and customisable

▶ Immediate mode ?

Immediate mode GUI

● Coined by Casey Muratori in 2002 as “Single-path

Immediate Mode Graphical User Interface,”

● Zero Memory Widget by Thierry Excoffier

● Immediate mode drawing (Open GL, etc) applied

to GUIs

● More procedural way to approach GUIs than

traditional architecture based on OOP hierarchy of

widget classes

● Settled on Dear ImGui (github.com/ocornut/imgui)

by Omar Cornut

youtube.com/watch?v=Z1qyvQsjK5Y

Retained mode GUI (traditional GUI)

● Based on widget objects and callbacks

● Mimics how OS window managers work (event driven)

● Everything is a widget, often implemented through polymorphism

● Widgets hold their state

● Tree structure of parents and children

Clickable button with JUCE
Class Editor : public juce::AudioProcessorEditor,
 private juce::Button::Listener
{
public:

Editor::Editor()
{

_button.setText("Distortion");
_button.addListener(this);
addAndMakeVisible(_button);

}
 ...
private:

void buttonClicked(juce::Button* button) override;
juce::TextButton _button;

}

void Editor::buttonClicked(juce::Button* button)
{

_audioProcessor->enableDistortion(true);
}

Clickable button with JUCE
Class Editor : public juce::AudioProcessorEditor,
 private juce::Button::Listener
{
public:

Editor::Editor()
{

_button.setText("Distortion");
_button.addListener(this);
addAndMakeVisible(_button);

}
 ...
private:

void buttonClicked(juce::Button* button) override;
juce::TextButton _button;

}

void Editor::buttonClicked(juce::Button* button)
{

_audioProcessor->enableDistortion(true);
}

Clickable button with JUCE
Class Editor : public juce::AudioProcessorEditor,
 private juce::Button::Listener
{
public:

Editor::Editor()
{

_button.setText("Distortion");
_button.addListener(this);
addAndMakeVisible(_button);

}
 ...
private:

void buttonClicked(juce::Button* button) override;
juce::TextButton _button;

}

void Editor::buttonClicked(juce::Button* button)
{

_audioProcessor->enableDistortion(true);
}

Clickable button with JUCE
Class Editor : public juce::AudioProcessorEditor,
 private juce::Button::Listener
{
public:

Editor::Editor()
{

_button.setText("Distortion");
_button.addListener(this);
addAndMakeVisible(_button);

}
 ...
private:

void buttonClicked(juce::Button* button) override;
juce::TextButton _button;

}

void Editor::buttonClicked(juce::Button* button)
{

_audioProcessor->enableDistortion(true);
}

Clickable button with JUCE
Class Editor : public juce::AudioProcessorEditor,
 private juce::Button::Listener
{
public:

Editor::Editor()
{

_button.setText("Distortion");
_button.addListener(this);
addAndMakeVisible(_button);

}
 ...
private:

void buttonClicked(juce::Button* button) override;
juce::TextButton _button;

}

void Editor::buttonClicked(juce::Button* button)
{

_audioProcessor->enableDistortion(true);
}

Clickable button with JUCE
Class Editor : public juce::AudioProcessorEditor,
 private juce::Button::Listener
{
public:

Editor::Editor()
{

_button.setText("Distortion");
_button.addListener(this);
addAndMakeVisible(_button);

}
 ...
private:

void buttonClicked(juce::Button* button) override;
juce::TextButton _button;

}

void Editor::buttonClicked(juce::Button* button)
{

_audioProcessor->enableDistortion(true);
}

Clickable button with Dear ImGui

Editor::drawUi()
{

...
 if (ImGui::Button("Distortion"))
 {

_audioProcessor->enableDistortion(true);
 }
 ...
}

Window example

ImGui::Begin("Debug");
ImGui::Text("Hello, world %d", 123);
if (ImGui::Button("Save"))
{
 MySaveFunction();
}
ImGui::InputText("string", buf, IM_ARRAYSIZE(buf));
ImGui::SliderFloat("float", &f, 0.0f, 1.0f);
ImGui::End();

Immediate mode GUI

● Procedural - No classes

● Less boilerplate code - All in one place

● Optimised for dynamic UIs instead of static

● Minimises state duplication - Draws current model state

● Drawing is tied with logic - full redraw required to do work

● Stack based instead of parent - child tree structure

Stack example

ImGui::PushFont(_large_font):
ImGui::PushStyleColor(ImGuiCol_Text, BLUE_COLOR);
ImGui::Text("Large and Blue headline!");
ImGui::PopStyleColor();
ImGui::PopFont();

if (ImGui::IsItemHovered())
{
 ShowTooltip();
}

Lets hook it up to an audio plugin editor

But first a digression…

▶ Drawing
window managers
message loops
threads

How do computers draw on the screen?

The early days

● No buffering of full image - write directly to

display output

● Hardware accelerated sprites

● “Race the beam” for effects and optimisations

● Unparalleled latency

Draw to a framebuffer

● Required for 3D games

● Double buffering - render to an

off screen buffer

● Vertical blank - vsync

Scanout

Front bufferBack buffer

Application

Render

⇦
⇨

Swap

Multitasking is hard

● Sharing the screen is harder

● Window Manager

● Multiple processes need write to

the framebuffer

● Windows 1.0 (1985) with a tiling

window manager

Compositing Window Manager

● Since Windows Vista (2006) &

Mac OS 10.0 (2001)

● Per window off-screen-buffers

(or 2 with double buffering)

● Allows for effects, transparency,

miniatures, etc
Framebuffer

Window
Manager

Apps

Apps
Apps

Basic windowed application (event driven)

● Create window

● Attach Window callback to handle events/messages

● Call GetMessage() in a loop
○ or XNextEvent() (linux) nextEventMatchingMask() (Cocoa).

MSG message;
while (GetMessage(&message, nullptr, 0, 0) > 0)
{
 TranslateMessage(&message);
 DispatchMessage(&message);
}

Window callback

● Called by your message loop

● OS posts messages to the queue

whenever something happens
○ Mouse & keyboard input

○ Window moved, resized, closed

○ Clipboard / drag & drop

LRESULT CALLBACK windowProc(HWND hWnd,
 UINT uMsg,

 WPARAM wParam,
 LPARAM lParam)
switch (uMsg)
{
 case WM_SETFOCUS:
 {
 ...
 }
 case WM_KEYDOWN:
 {
 ...
 }

 case WM_MOUSEMOVE:
 {
 ...
 }

 case WM_MOUSEWHEEL:
 {
 ...
 }

 case WM_MOVE:
 {
 ...
 }

This is your message loop

● Often hidden by the GUI library

● At the bottom of QGuiApplication::exec()

● Plugin hosts call AEffEditor.open() in this thread

MSG message = { };
while (GetMessage(&message, nullptr, 0, 0) > 0)
{
 TranslateMessage(&message);
 DispatchMessage(&message);
}

Cross-platform example

...
while (running)
{
 glfwWaitEvents();
}

● glfwWaitEvents() does the equivalent of

GetMessage() -> TranslateMessage() -> DispatchMessage()

on every platform

Painting

● WM_PAINT message sent to windows when updates required

● Painting separate from handling input

● “Damaged” parts accessed through InvalidateRect() and GetUpdateRect()

● Painting happens in your thread, but when the OS decides.

Vsync-driven event handling and painting

● glfwPollEvents() instead of glfwWaitEvents()

● Drawing synchronised to screen refresh rate instead of paint

messages

glfwSwapInterval(1)
...
while (running)
{
 glfwPollEvents();
 // Painting, etc..
 ...
 glfwSwapBuffers();
}

Hardware acceleration

● OpenGL, Vulcan, Metal, DirectX.

● Sends draw commands to the GPU which draws asynchronously

● Call glSwapBuffers() to sync

● OpenGL contexts are not thread safe

● Render backends provided by Dear ImGui

▶ Plugin GUI specifics

Adapt a GUI framework to an audio plugin

Main issues

1. You don’t own the message loop

2. Managing multiple instances

3. Window creation

You don’t own the message loop

● Don’t create your own - Use the host’s message loop

● Window callback will be called by the host’s message loop

● Easy with Dear ImGui because of frontend / core / renderer split

● Plugin APIs may request special behaviour - Read keyboard events through

IPlugView::onKeyDown() (VST3), not through WM_KEYDOWN, WM_CHAR

Multiple instances

● Static data and initialising it (last one out turns out the lights)

● Docking branch of Dear ImGui supports multiple viewports

● The more subtle case of multiple plugins built with same framework

● Prefer static linking

● Unique Window ClassName (Windows)

Window creation

● Cross platform libraries wrap the native OS window

● VST API gives you a native OS window

● Create your own window and reparent it to the OS window

● SDL has SDL_CreateWindowFrom()

● Window resize can be tricky

▶ Integrating Dear ImGui
in a plugin

Dear ImGui architecture

● Core has no dependencies apart from STL

● Example control frontends and renderers included for most platforms/apis

● Full state contained in 1 context struct. Usually set up as a static variable

Dear ImGui
Core

Renderer
OpenGl
Metal
Vulcan
…

Control frontend
GLFW
SDL2
Native
…

Control
events

Vertex
buffers

Dear ImGui on embedded systems

● Embedded systems usually have no WM (X11) - Direct framebuffer access

● Need a custom control frontend

● Moderate, but predictable CPU load.

Dear ImGui
Core

Renderer
OpenGl
Metal
Vulcan
…

Control frontend
Custom

Control
events

Vertex
buffers

My first attempt (too smart for my own good)

● glfw for window handling with static counter for (de)initialising

● Separate render thread for each editor window

● Thread local Dear ImGui contexts

● Worked decently on Linux and Windows

● Failed on Mac due to permissions

I think I have it figured out

Do everything on the message thread, including drawing

Or:

Set up a render thread that draws synced to the frame rate and pump messages to it
from the message thread

Single threaded drawing

● Easy to reason about

● Less locking

● Set up timer to call draw function at 20-60Hz on message thread
○ On Linux you need to rely on plugin api timers (CLAP, VST3, LV2)

● Animations could lag

Separate render thread

● Allows for smooth animations synched to screen refresh rate

● Events still need to be handled on the message thread

● Needs sync for window size changes / open / close / minimise, etc

● Included glfw frontend not thread safe

Plugin state - GUI State

● ImGui::SliderFloat(const char* label, float* v, float v_min, float v_max …)

● Can point directly into data model - not ideal for an audio plugin
○ Bypasses the host

○ Preserve values across callbacks and atomic updates

○ Performance hit through cache invalidation

● Solution - keep some state

● Dirty flag per parameter

Redraw strategies

● If no interaction and no animations - no need to draw

● Still need more than WM_PAINT, all user input require a redraw

● Built in event queue to handle low fps

● No support for partial redraws

▶ Customising Dear ImGui

Layout

● Demo window

● By default geared towards a

vertical layout

● Can use ImGui::SameLine()

● Went for completely fixed layout

Custom horizontal layout

● Fixed widget placement using

ImGui::SetCursor()

● Useful pattern to divide in high level blocks and

return position + width

● ~500 LOC

Useful layout pattern

...
float pos_x = scale * BOX_LEFT_PADDING;
pos_x = _draw_gain_box(pos_x, drawlist, scale);
pos_x = _draw_comp_box(pos_x + BOX_SPACING * scale, drawlist, scale);
pos_x = _draw_tone_box(pos_x + BOX_SPACING * scale, drawlist, scale);
pos_x = _draw_scope_box(pos_x + BOX_SPACING * scale, drawlist, scale);
_draw_master_box(pos_x + BOX_SPACING * scale, drawlist, scale);
...

float Editor::_draw_gain_box(float pos_x, ImDrawList* drawlist, float scale)
{
 ...
 return pos_x + width * scale;
}

Fonts

● Glyphs are rasterized to a texture

(Font Atlas) and rendered

● Uses stb_truetype per default (no

hinting), support for FreeType

● Ideally one font per scale and

Reload/rebuild on window size change

● Tool to compile fonts into the binary

Custom widgets

● Using only the public api:
○ ImGui::InvisibleButton() and custom drawing

● Using the internal api:
○ Use ImGui::ButtonBehavior(), Imgui::SliderBehavior() with custom drawing

● Plenty of third party widgets, knobs, file dialogs, node graphs, etc

● Rich ecosystem of extensions and widgets, see:

github.com/ocornut/imgui/wiki/Useful-Extensions

● Use FontAwesome or OpenFontIcons for symbols

Drawing

● Use ImGui::Drawlist

● Draws lines, polygons, basic shapes

● Can use textures

▶ Summary &
conclusions

Immediate mode GUI - The good stuff

● Like the concept and fun to work with (could be the IKEA effect talking)

● Clean and succinct code

● Quick to prototype and work with

● Small binary size < 2MB

Immediate mode GUI - The bad stuff

● Text/font handling is awkward and rasterization not the best

● No multi DPI support (yet)

● Somewhat high CPU toll

● Localisation and accessibility support is basic

Was it worth it?

● Yes! I learned a lot. Hence this talk

● Actually released a plugin!

● Gave me a new perspective on how to write GUIs

● Still a passion project, would have prioritised differently for a commercial project

Resources

● github.com/ocornut/imgui
○ Dear Imgui library

● github.com/ocornut/imgui/wiki/Useful-Extensions
● github.com/free-audio/clap-imgui-support

○ Official CLAP support - message thread based

● github.com/schwaaa/clap-imgui
○ CLAP support example - message thread based

● github.com/Krasjet/imgui_juce
○ Juce support - Render thread, probably not complete

● github.com/noizebox/vstimgui
○ My own experiments (not updated, still thread local contexts)

▶ Questions!

gustav@elk.audio

