


What will I talk about?

● Developing software for hardware
● Why?
● How? Architecture, tools, …
● Starter kit



Myself

● 25+ years in software development
● 4+ years in Polyend as Head of 

Software/Architect
● Polyend Tracker, Play and more



Why hardware?

● Fun!
● Creative - challenges because of limitations
● Different - new perspective, learning experience, 

out of the box thinking
● Simpler - where it counts - UI, for instance
● End user perspective



Not that different, really?

● System-level languages already prevail in 
real-time audio

● All the tooling is the same or similar
● Linux



Architecture - hardware

● MCU/APU
○ CPU - ARM Cortex M4/M7/A

■ 32/64 bits, FPU, some SIMD, caches
○ RAM - 128 kB up to 2 MB
○ Flash - MBs
○ Peripherals - GPIO, I2C, I2S, SPI

● SDRAM
● Option: System-On-Module



Architecture - hardware

● Audio codec
● Display + input (buttons, pots, encoders, …)
● MIDI
● USB, SD card, …



Architecture - software



Architecture - software



Architecture - software

● Audio buffers fill
○ Handle audio-related events
○ Incoming midi
○ Sequencer logic

● User interface
● System services - software updates, logging, …



Architecture - software

● Threading vs interrupts
○ Linux - as on desktop
○ Bare metal

■ Audio buffers fill from codec interrupt
■ UI in main loop
■ Synchronization in the UI thread only

○ RTOS
■ Something in between



Working with hardware



Working with hardware

Target

Debug probe
MCU Link, 

STLink
Drivers

Debug Server
OpenOCD

Debug Client
GDB

IDE

SWD, 
JTAG

USB Host



Prototyping platforms

● Raspberry Pi (Linux)
○ Audio shield / USB audio interface
○ Display
○ Shields with various input peripherals

● Electrosmith Daisy (bare metal / RTOS)
● Teensy (bare metal / RTOS)
● Zynthian (Linux)
● Eurorack dev modules



Open Source

● Zynthian
● Mutable Instruments Archive

○ https://github.com/pichenettes
● PreenFM3



Thank you

Q&A


