

Overview
What to Expect

Audio In Audio Out
Device

Data OutData In

Examples:
Guitar Pedals

Audio Interfaces

Synthesizers

• Introduction to building digital audio HW + FW

• Overview of:

• Circuit building blocks

• Schematic and PCB layout

• Firmware architecture

• Audio processing tips

• Debugging and profiling bare-metal code

What NOT to Expect

• How to build analog hardware

• Comprehensive guide to HW + FW

development

Allen Lee

@superkittens

alee@meoworkshop.org

Independent Audio Developer

Focusing on:
Spatial Audio

Bare-metal Audio Development

Orbiter
Spatial Audio Plugin

Apple [3 Years]

Sensor Calibration Systems Development

Background Experience

SMART Technologies [3 Years]

Automated Test Equipment (ATE) Development

BitMasher

• Audio effects device with retro-game inspired UI

• 5 Main Effects:

• Filters (LPF, HPF, BPF)

• “Revolving Loudspeaker” Simulation

• Bit Crusher

• “Tape Playback” Simulation

• Granular

Introduction

Overview

• BitMasher’s architecture is similar to those found in many audio products

• Specific architectural details differ between products but the basic form is generally the same

• Many of the design steps in BitMasher apply to other audio products!

MCUADC DAC

UserIO

Audio In Audio Out

Peripherals*

*Peripherals may include:
Non-volatile storage

Communication to Host PC

MIDI Signalling

Display

etc

Basic Architecture

The Hardware

Hardware
BitMasher HW Block Diagram

MCU

Audio IO

Power

UserIO

DisplayComm

UserIO

DisplayComm

Microcontroller (MCU)

• The “brains” of your audio hardware

• Combination of one (or more) CPU cores and peripherals in one package

• Less powerful than desktop/laptop processors but can still do lots with them!

• BitMasher uses the Silicon Labs Pearl Gecko family of MCUs

Overview

BitMasher PCB EFM32PG12 Layout

Feature chart from EFM32PG12 reference manual

Microcontroller

• There is a huge choice of microcontrollers which can make MCU selection difficult!

• The following (non-exhaustive) selection criteria can help narrow your choices

Microcontroller Selection

Criteria Notes

Architecture 8-bit systems good for simple tasks, 32-bit systems good for more complex tasks (e.g. DSP)

Peripherals Will you need ADCs? DACs? Hardware Timers? Etc

Memory Audio DSP routines typically need lots of memory. MCUs with large RAM will be helpful

Power If your project is battery powered, consider low energy MCUs

Availability + Vendor
Support Is the part easily available? Does the vendor offer good support? Do forums exist?

Cost $$$

Audio IO
• Convert analog audio signals to digital ones

• Send digitized signals to MCU

• Receive processed data from MCU

• Convert digital audio signal to analog

• Few ways to implement this chain

ADC DSP DAC

Dedicated ADCs/DACs

• A number of dedicated ADC and DAC ICs are available

• Some combine both functions (typically called audio codecs)

• Audio data transfer to the MCU is often through the I2S protocol

Overview

MCU Audio Codec
Audio In

Audio Out

Codec Control
(I2C, SPI…)

/

MCLK

LRCLK

SDOUT

SDIN
I2S Lines

Audio Codec Typical Connection

Dedicated ADCs/DACs

• There is also a large choice of audio codecs!

• Therefore, down-selecting potential codecs depends on different criteria such as:

• Bit-depth

• Sampling Frequency

• Power Consumption

• Footprint

• Noise Performance

• Cost and Availability

• Vendor Support

Codec Selection Criteria

A search for audio codec on Digikey returned 909 results!!

Microcontroller ADCs/DACs

• A MCU’s internal ADC can be used to convert audio signals

• Many MCUs do not feature a DAC but if yours does, they can also be used!

• There are however, some additional circuitry that may be needed

• Note that many internal ADC/DACs do not have the bit-depth of dedicated audio ADCs/DACs

Overview

Anti-Alias Filter +
Biasing

Audio Signal Flow Using Internal ADCs and DACs

ADCAudio In

MCU

DAC Output Filter Audio Out

Microcontroller ADCs/DACs

• When converting an analog signal, usually some form of low-pass anti-aliasing filters are needed

• Active filters recommended over passive ones

• Many excellent online filter design tools are available!

• Oversampling is another option but may be prohibitive depending on processor capabilities

ADC Input Anti-Alias Filter

Analog Devices Filter Design Tool

https://tools.analog.com/en/filterwizard/

N = ADC Bit DepthSBdB = 20 log(2−N)
Minimum Stop Band Attenuation Formula

Example:

For a 12-bit ADC, the minimum stop band

attenuation is 20log(2^12) = -72 dB

Microcontroller ADCs/DACs

• Many ADCs in MCUs are not dual-rail (+ve and -ve voltage swing) capable

• Therefore, a bias will need to be introduced to the signal to avoid signal clipping

• This may affect your DSP algorithms so remember to remove the DC component in-software!!

Anti-alias Filter Design

4th Order Sallen-Key Filter

Voltage Divider

(Signal Biasing)

System Power

• Power circuit designs vary depending on system complexity and needs

• Careful design considerations must be made with regards to supply, capacity, signal

integrity, protection etc

Overview

BitMasher Power Network

2.5 V

3.0 V

Supply
Switching

USB VBUS

2x AAA Cell

Enable (MCU)

MCU, Codec, UserIO

Display

Regulation

System Power

• Batteries are the most popular way to power portable electronics

• Different battery chemistries are suited for different applications

Battery Chemistry

Chemistry Pros Cons

Alkaline Widely available, reasonably good power density,
good selection of capacities

Not rechargeable, may not be suitable for high
discharge applications

LiPo Rechargeable, high power density, small form factor,
capable of high discharge rates Dangerous if not handled properly, expensive

System Power

• Measured current draw = 20 mA

• Minimum VIN voltage for 2.5 V regulator = 2.675 V

BitMasher Expected Lifetime

https://www.duracell.com/wp-content/uploads/2020/02/MN24US1119.pdf

If constantly drawing 20 mA,
Expect about 13 hours of operation
May benefit from using 1.8 V regulator instead
at the cost of audio input overhead!

System Power

• Voltage regulators supply a stable voltage source to components

• Like many components, there is a wide selection!

• Some criteria include desired voltage, current output, footprint and type

• Two main types: Linear and Switching

Voltage Regulation

2.5 V Linear Regulator

3.0 V Switching Regulator

System Power

• Very simple to understand

• Clean voltage output = Great for analog circuits!

• Vout < Vin only

• Be careful of dropout voltages as this may affect

your battery choices!

Linear Regulators

BitMasher 2.5 V Output

BitMasher draws about 20 mA @ 2.5 V
so we will use IOUT = 50 mA value.

Therefore, VIN >= 2.5 + 0.175 = 2.675 V

MIC5219 Dropout Voltage Characteristics

System Power

• Very efficient!

• Buck AND boost (Vout > Vin) options

• Can be noisy = Not great for analog circuits

• Improper PCB layout and component selection

can cause stability and EMC issues

Switching Regulators

BitMasher 3.0 V Output RippleExample PCB Layout for Switching Regulator

From TI TPS6108 Datasheet

*Be careful when selecting capacitors
and inductors! Poor selection can
lead to worse noise performance
and/or stability issues!
Follow manufacturer recommendations

System Power
BitMasher Power Needs

Component Operating Voltage + Current Consumption Requirements

MCU 1.8 - 3.8 V Operating voltage, 126µA / MHz current draw (@40 MHz, 5.04
mA, no peripherals) 1x 1.8 V regulator with at least

16 mA current output capability

(Increase to 2.5 V for additional
audio input overhead)Codec 1.8 - 2.63 V Operating voltage, ~11 mA current draw (stereo + headphone

output)

Display 2.7 - 3.3 V Operating voltage, ~50 uA current draw
1x 3.0 V boost and buck
regulator with at least 50 uA
current output capability

Schematic Capture + Layout

• Electronic Design Automation Tools

• Encompasses schematic capture, PCB layout, RF simulations, etc

• Can range from free to $$$$$$$$$$$

• Popular hobbyist EDA tools include KiCad, EAGLE, Altium CircuitMaker/CircuitStudio

EDA Tools

KiCad (BitMasher Schematic and PCB)

Schematic Capture + Layout

• IC manufacturers often provide reference designs found in the data sheet or application note

• Example circuits usually specify recommended passives and wiring

Reference Designs

CS42L52 Reference Design

Cirrus Logic CS42L52 Reference Design

CRD42L52

Recommended bypass capacitor
network

Input filtering network

Schematic Capture + Layout

• READ YOUR DATA SHEETS!

• Make sure that a given peripheral DOES offer the feature you want!

RTFM

Example

• EFM32PG12 MCU offers I2S via USART (serial) modules

• Multiple USART modules available (USART0, 1, 2…)

• Not all USART modules are I2S capable however…

Guess who put I2S on UART0

Oops!
(Rework wires to move

Codec connetions to USART1)

Schematic Capture + Layout

• Makes debugging, verification and reworking much easier!

• Allows for circuit and functional testing if manufacturing your device

• Break out unused MCU pins to test points or connector

• You might end up needing them!

Test Points

Test Points

Voltage Test Points

Unused MCU Pins

Schematic Capture + Layout

• PCB manufacturers will provide a list of manufacturing tolerances

• These tolerances should be added to your software’s Design Rules Checker (DRC)

• Add extra margin to manufacturer’s minimum trace widths, spacing and drill sizes!

PCB Fabrication

KiCad Design Rules Check SettingsSample Tolerances

https://docs.oshpark.com/services/two-layer/

Schematic Capture + Layout

• PCBs with a mix of analog and digital circuits require some extra attention

• Component and trace placement becomes very important

• Grounding becomes especially important

• Improper layout may cause switching noise to couple into analog lines!

Mixed Signal Layout Considerations

BitMasher Audio Output Capture
Connecting an oscilloscope
probe to the audio output
shows spikes in the audio!

Root cause is from the display SPI lines
Note that the time between audio
spikes is the same as the time between
SCK groups

33 ms (30 Hz)

Schematic Capture + Layout

• PCBs can have multiple copper layers to place traces

• Dedicated ground planes provide shorter current return paths for high speed signals

• Benefits include reduced noise and EMC emissions

Ground Planes

Dedicated internal
ground plane
(Purple area)

-0.1

0.1

4-Layer PCB
(With ground plane)

*Grounding is a complicated topic and techniques vary on a case-by-case basis!

Audio Output Capture (Recorded)

0.1

-0.1

AD
C

 V
al

ue
 (N

or
m

al
iz

ed
)

2-Layer PCB
(No ground plane)

Time

Schematic Capture + Layout

• Bypass capacitors should be placed as close as possible to the IC

• Longer distances → longer traces → greater inductance → greater EMC emission risk

• Longer distances also impede the capacitor from supplying power during transients

Bypass Capacitor Placement

Bypass
Capacitors

PCB Assembly

• Two main soldering methods for prototyping:

• Hand soldering

• Reflow soldering

• Reflow soldering is predominantly used in
manufacturing

• Therefore, if planning to manufacture your product, it
is recommended to use SMT components!

Soldering
*Soldering presents health and safety hazards!
Take appropriate precautions before soldering!!

Preparing PCB for Reflow

The Firmware

The Firmware

• For a more in-depth introduction to embedded programming, the
below ADC20 talks are highly recommended

Past ADC Talks

Audio IO
Audio Data Flow (I2S)

MCLK

LRCK

SDIN

SDOUT

Output Buffer I2S TX Buffer

0x80

I2S RX Buffer

Sample copied to I2S
TX Buffer

Input Buffer

0x80

Sample clocked out
to codec (SDIN pin)

Incoming sample
from codec (SDOUT pin)

Sample copied to
input buffer

I2S Signalling

Left Channel Right Channel

0x010x01

Audio IO
Sequence of Events

Normal
program execution
Apply DSP,
Update graphics etc

Time

Sample written to codec
Sample received from codec

Add left RX sample to input buffer
Add right TX sample to I2S TX buffer

ISR
Add right RX sample to input buffer
Add new left TX sample to I2S TX buffer

*High frequency of interrupts can negatively affect performance!

Add left output sample
To I2S TX Buffer

Audio IO

• High frequency of interrupts can affect performance!

• Direct Memory Access (DMA) module offloads movement of data from CPU

• Asynchronous transfer and reception of audio data leaves more time for processing!

Direct Memory Access

DMA Config Struct (TX)

Src (Output Buf)

Dest (I2S TX) DMA writes data
to I2S TX buffer
In the backgroundBlock Size

DMA writes received
data to input buffer
in the background

DMA Config Struct (RX)

Src (I2S RX)

Dest (Input Buf)

Block Size

DMA
ModuleMemory Peripherals

Data Flow from Memory to Peripherals

Audio IO
Direct Memory Access

Add left output sample
To I2S TX Buffer

Sample written to codec

ISR

Time

Sample received from codec

Samples written to codec
Samples received from codec

Setup DMA config structs
for next data transfers

More time for processing!

Before DMA

After DMA Start DMA Transfers

Firmware Architecture
• Managing many different tasks (audio processing, transport, IO, display etc) can be difficult

• Many approaches to task management

• BitMasher uses a task queue

Audio

Audio DMA ISR
Input buffer is full

Task Queue

Event Loop

Firmware Architecture
• Managing many different tasks (audio processing, transport, IO, display etc) can be difficult

• Many approaches to task management

• BitMasher uses a task queue

AudioUpdate

Task Queue

Event

Display update
timer expires

Loop

Firmware Architecture
• Managing many different tasks (audio processing, transport, IO, display etc) can be difficult

• Many approaches to task management

• BitMasher uses a task queue

AudioUpdate

Task Queue

Event Loop

Get item
from queue

Audio
Processing

Firmware Architecture
• Managing many different tasks (audio processing, transport, IO, display etc) can be difficult

• Many approaches to task management

• BitMasher uses a task queue

Update

Task Queue

Event Loop

Get item
from queue

UserIO

Handler

Scene
Update Draw

Maximum Allowed Processing TIme = 32 msec

Firmware Architecture

• Working with real-time audio means that there are timing constraints!

• Timing can be especially tricky when there are other tasks
• To determine the maximum time allowed for all tasks to complete, use the task with the highest

bandwidth as a basic starting point

Timing Budgets

Example

New buffer of output samples expected every 32 msec
fs = 32 kHz
Buffer Size = 1024 samples

Audio

Update Display Refresh Rate = 30 FPS
(33 msec per frame change)

Audio Processing

(~16 msec Budget)

Update

(~16 msec Budget)

Audio processing and updating times are split evenly
in this case, any reasonable ratio can be used

*This illustrates one such timing strategy but many others exist!
Another technique is to assign priorities to certain tasks and allow
higher priority tasks to preempt lower priority ones

Audio Processing

• Many MCUs do not have floating point units (FPU)

• For MCUs with no FPU, floating point operations need to be done in-software = performance hit

• Because of this, fixed-point notation is often favoured

Fixed Point Notation

Fraction

(Bits 14:0)

Sign

(Bit 15)

Q1.15 Fixed Point Number

16-bits (uint16_t)

Lowest Number Representable:
−32768

215
= − 1

Highest Number Representable:
32767

215
= 0.99997

Arithmetic Operations

A + B = A + B A − B = A − B A
B

= (A/B) < < 15AB = (A * B) > > 15

Addition Subtraction DivisionMultiplication * Note that addition and subtraction operations
Run the risk of over/underflow!

* When multiplying two Q1.15 numbers, the result
should be stored in a 32-bit wide variable before
shifting

Audio Processing

• DSP libraries written by ARM for ARM-based MCUs

• Helpful when optimizing audio DSP algorithms

• Offers:

• Accelerated math functions

• Fast trigonometric functions

• FFT

• FIR and IIR (Biquad) Filtering

• And more!

ARM CMSIS DSP Library

Audio Processing

• ARM Cortex M3 and M4 cores offer limited SIMD functionality!

• 32-bit register length

• Not usable for floating point numbers but useful when using fixed point numbers

SIMD

B

(uint16_t)

A

(uint16_t)

D

(uint16_t)

C

(uint16_t)

Packed Variables

B - DA - C __SSUB16(E, F)

E (uint32_t)

F (uint32_t)

Audio Processing
SIMD Example

APCF 0

FBCF 0

FBCF 1

FBCF 2

FBCF 3

APCF 1 APCF 2

Comb Filters contain delay lines

Schroeder Reverberator

Delay line index decrement
(Point to next element to store and read samples)

Operation occurs for every comb filter

Update 2 delay lines
at a time using SIMD

Audio Processing
SIMD Example

FBCF1

DL Index

FBCF0

DL Index

Comb Filter Delay Line Lengths
Converted to uint16_t
Packed into single uint32_t variable

11
Constant
2 uint16_t 1’s packed into a
single uint32_t variable

Comb Filter Delay Line Index Update

A

B

__SSUB16(A, B)

FBCF1

DL Index - 1

FBCF0

DL Index - 1 Result

Audio Processing
SIMD Example: Performance Gain

*Optimization level 3 (GCC) enabled
 Processing Buffer Size = 1024 Samples
 EFM32PG12 MCU @ 40 MHz

Regular Index Decrement

Index Decrement with SIMD

3.74 msec (Baseline)

2.86 msec

Schroeder Reverberator Processing Time

Debugging Tools
Hardware-Based Tools

• A multimeter is a must when developing circuits

• An oscilloscope is highly recommended especially when working with analog circuits

• Pocket oscilloscopes and second-hand markets offer budget-friendly options

• A logic analyzer is indispensable for profiling digital signals and code execution times

Logic AnalyzerOscilloscopeMultimeter

Performance Profiling
Execution Time Profiling: GPIO Toggle

*If using an API call to toggle pins, be aware that
the function may be calling extra code which introduces
measurement latency!

Set GPIO HIGH before entering code in question then set to LOW when exiting

Probe pin with oscilloscope or logic analyzer

processAudio() takes 6.3 msec

Performance Profiling
Execution Time Profiling: Hardware Timer

Setup TIMER0 (EFM32PG12 MCU)
Note that increasing pre-scale values will increase time before timer overflow
But granularity will be decreased!

Enable the timer before entry into code
Disable the timer after exit and read timer value

*It is a good idea to have an interrupt enabled in case of timer overflow!

Performance Profiling
Execution Time Profiling: Data Watchpoint Trace

The DWT counter is incremented at each CPU Clock cycle
Like the hardware timer, there is a chance for counter overflow
Therefore, it is a good idea to add an overflow interrupt!

• Some ARM Cortex MCUs include a Data Watchpoint Trace module which includes a counter!

• Some MCU manufacturers may or may not choose to implement the DWT Module

Final Remarks
• Building audio hardware consists of many different components!

• First time? Start small!

• Start with basic circuits and PCBs

• Arduinos offer a good introduction to bare-metal programming

• Start with simple FW projects using one peripheral at a time

• Then slowly work up to more complex systems

•No shortage of amazing online resources!

Resources
• The Art of Electronics (Horowitz and Hill)

• Small Signal Audio Design (Douglas Self)

• EEVBlog (Dave Jones)

• Contextual Electronics (Chris Gammell)

• Op-amp Applications Handbook (Analog Devices)

• The Hitchhikers Guide to Embedded Audio (Tom Waldron, ADC20)

• Bare Metal Audio Programming with Rust (Antoine van Gelder, ADC20)

• Altium Blog (For various PCB design tips)

• Sparkfun (Tutorials and parts)

• Adafruit (Tutorials and parts)

https://www.youtube.com/c/EevblogDave/playlists
https://www.youtube.com/c/contextualelectronics
https://www.analog.com/en/education/education-library/op-amp-applications-handbook.html
https://www.youtube.com/watch?v=nFRNG6umgFw
https://www.youtube.com/watch?v=udlK1LQ3f3g
https://resources.altium.com/pcb-design
https://learn.sparkfun.com/tutorials
https://learn.adafruit.com

Thank you!

